EXHIBIT D

Kennedy, John C.

From: Kennedy, John C.

Sent: Thursday, October 24, 2013 2:37 PM

To: Mark Wind

Cc: George, Caleb; David Colombo

Subject: RE: RI-14319785 WED #1 and RI-14462941

Hi Mark,

We are 99% complete on the impact study for both turbines 1&2. We need the flicker data information as requested in July to complete. Please provide as soon as able.

We also need the payment for #2 turbine, RI – 14462941.

Thanks,

John C. Kennedy

nationalgrid

Lead Technical Support Consultant - RI Technical Sales and Engineering Support

Office: 401-784-7221 Cell: 401-255-5191

Please select the appropriate link below for the latest information on:

Interconnection Standards - MA, RI, NH

Net Metering - MA, RI, NH Wholesale Energy Procurements

From: Kennedy, John C.

Sent: Tuesday, July 23, 2013 10:15 AM

To: Mark Wind **Cc:** George, Caleb

Subject: FW: RI-14319785 WED

Mark,

Please have your engineer provide a flicker data sheet per our engineer's request below.

Thanks,

John C. Kennedy

national**grid**

Lead Technical Support Consultant - RI Technical Sales and Engineering Support

Office: 401-784-7221 Cell: 401-255-5191

Please select the appropriate link below for the latest information on:

Interconnection Standards - MA, RI, NH Net Metering - MA, RI, NH Wholesale Energy Procurements

Subject: RI-14319785 WED

John,

Could you please ask the developer to provide a Flicker data sheet similar to the attached based upon the fault characteristics calculated at the POI for RI-14319785 listed below:

POI RI-14319785 Piggy Ln 12.47kV Single	Phase to Ground F	ault Type=A							
FAULT	ΓCURRENT (A @	DEG)							
+ SEQ	- SEQ 0 SEQ A PHASE B PHASE C PHASE								
251.3@ -94.2	251.3@ -94.2								
THEVENIN IMPEDANCE (OHM)	-								
2.97133+j6.05887									
SHORT CIRCUIT MVA=									
POI RI-14319785 Piggy Ln 12.47kV 3 Pha	se Fault								
FAULT	CURRENT (A @	DEG)							
+ SEQ	- SEQ	0 SEQ	A PHASE	B PHASE	C PHASE				
1095.6@ -94.1	0.0@ 0.0	0.0@ 0.0	1095.6@ - 94.1	1095.6@ 145.9	1095.6@ 25.9				

THEVENIN IMPEDANCE (OHM)				
2.97133+j6.05887 2.97135+j6.05878 6.96014+j14.3161				
SHORT CIRCUIT MVA=				
24.3				

Please contact me if you have any questions.

Thanks,

Nick

Nicholas Reis PE Consulting Engineer Control Point Technologies Cell 401-413-9099 Nreis@controlpointtech.com

ControlPoint Technologies, Inc. 300 LEDGEWOOD PLACE, ROCKLAND, MA, 02370

Error! Filename not specified.

EXHIBIT E

Kennedy, John C.

Kennedy, John C. From:

Wednesday, February 12, 2014 3:31 PM Sent:

'Laura Anthony' To:

'mdepasquale Windenergydevelopment' Cc:

FW: RI-14319785 WED Coventry & RI-14462941 Coventry Town Hall Subject:

Impact Study Agreement: 14462941 WED Coventry Two, LLC; INVOICE-Impact Study.pdf Attachments:

Hi Laura,

We did receive the data required and have recently completed the combined study for both projects referenced as requested.

We do need to complete the execution of the Impact Study Agreement however that was sent out on September 23, 2013. This includes signing agreement and submitting payment. Please reference agreement and invoice within attachments.

Please contact me with any questions you might have.

Best regards,

John Kennedy

national**grid**

Lead Technical Support Consultant - RI Technical Sales and Engineering Support

Office: 401-784-7221

Please select the appropriate link below for the latest DG information:

National Grid's DG Website(RI)

RIPUC No.2078 Standards for Connecting Distributed Generation

RIPUC No.2075 Net Metering Provision

ESB No.756 Requirements for Parallel Generation

From: Laura Anthony [mailto:la@wedenergy.com] Sent: Wednesday, February 12, 2014 9:52 AM

To: Kennedy, John C.

Cc: Mark(Wind) Depasquale

Subject: RE: RI-14319785 WED Coventry & RI-14462941 Coventry Town Hall

Good morning John,

I have not seen any additional correspondence pertaining to this issue. I wanted to follow up to see if you had everything you needed and that this has been resolved.

Laura Anthony

3760 Quaker Lane

North Kingstown, RI 02852 Office: 401-295-4998 Ext. 104

Fax: 401-295-4944 la@wedenergy.com

Please consider the environment before printing this email.

From: Raquel Justa [mailto:rjusta@goldwindamerica.com]

Sent: Monday, January 13, 2014 5:16 PM

To: John.Kennedy@nationalgrid.com; nreis@Controlpointtech.com; caleb.george@nationalgrid.com

Cc: Thomas Nemila; Scott Rowland; Mark(Wind) Depasquale; Tim O'Malley Subject: RE: RI-14319785 WED Coventry & RI-14462941 Coventry Town Hall

Dear John,

I write regarding the Flicker data from Goldwind turbines for the projects in Rhode Island. I understand that the attached is the template to provide the info. Is it possible for you to setup a call later this week to clarify a couple points?

I look forward to hearing from you. Kind regards,

Raquel Justa

Engineering & Technical Sales Support **Goldwind Americas** 200 W. Madison, Ste. 2800 | Chicago, IL 60606

T: +1.312.948.8037 | M: +1.312.288.1605

rjusta@goldwindamerica.com | goldwindamerica.com

This transmission contains confidential and/or legally privileged information from Goldwind USA, Inc. intended only for the use of the individual(s) to which it is addressed. If you are not the intended recipient, you are hereby notified that any disclosure, copying or distribution of this information or the taking of any action in reliance on the contents of this transmission is strictly prohibited. If you have received this transmission in error, please notify us immediately.

EXHIBIT F

Exhibit E – Impact Study or ISRDG Agreement

This Agreement, dated <u>April 3, 2014</u>, is entered into by and between <u>WED Coventry Two, LLC</u> ("Interconnecting Customer") and the Company, for the purpose of setting forth the terms, conditions and costs for conducting an Impact Study relative to the Standard Process as defined in Section 1.0 and outlined in Section 3.0 of the Interconnection Tariff. This Impact Study pertains to Application Number <u>RI-14462941</u> (the Interconnecting Customer's application ID number).

- 1. The Interconnecting Customer agrees to provide, in a timely and complete manner, all additional information and technical data necessary for the Company to conduct the Impact Study not already provided in the Interconnecting Customer's application.
- 2. All work pertaining to the Impact Study that is the subject of this Agreement will be approved and coordinated only through designated and authorized representatives of the Company and the Interconnecting Customer. Each party shall inform the other in writing of its designated and authorized representative, if different than what is in the application.
- 3. Where there are other potentially Affected Systems, and no single Party is in a position to prepare an Impact Study covering all potentially Affected Systems, the Company will coordinate but not be responsible for the timing of any additional studies required to determine the impact of the interconnection request on other potentially Affected Systems. The Interconnecting Customer will be directly responsible to the potentially Affected System operators for all costs of any additional studies required to evaluate the impact of the interconnection on the potentially Affected Systems. The Company will not proceed with this Impact Study without the Interconnecting Customer's consent to have the other studies conducted.
- 4. If the Company determines, in accordance with Good Utility Practice, that the System Modifications to the Company EPS are not substantial, the Impact Study will determine the scope and cost of the modifications. If the Company determines, in accordance with Good Utility Practice, that the System Modifications to the Company EPS are substantial, the Impact Study will produce an estimate for the modification costs (within ±25%) and a Detailed Study Agreement and its estimated cost.
- 5. Impact Study, together with any additional studies contemplated in Paragraph 3, shall form the basis for the Interconnecting Customer's proposed use of the Company EPS and shall be furthermore utilized in obtaining necessary third-party approvals of any required facilities and requested distribution services. The Interconnecting Customer understands and acknowledges that any use of study results by the Interconnecting Customer or its agents, whether in preliminary or final form, prior to NEPOOL 18.4 approval, should such approval be required, is completely at the Interconnecting Customer's risk.
- 6. The Impact Study fee of \$10,000.00 (except as noted below) is due in full prior to the execution of the Impact Study. For a Renewable Interconnecting Customer the ISRDG Study fee is as per Table 2 in Section 3.5 of the interconnection tariff.
- 7. Final Accounting. Upon request by the Interconnecting Customer, the Company within ninety (90) business days after completion of the construction and installation of the System Modifications described in an attached exhibit to the Interconnection Service Agreement, shall provide Interconnecting Customer with a final accounting report of any difference between (a) Interconnecting Customer's cost responsibility under the Interconnection Service Agreement for the actual cost of such System Modifications, and (b) Interconnecting Customer's previous aggregate payments to the Company for such System Modifications. To the extent that Interconnecting Customer's cost responsibility in the Interconnection Service Agreement exceeds Interconnecting Customer's previous aggregate payments, the Company shall invoice Interconnecting Customer and Interconnecting Customer shall make payment to the Company within forty-five (45) days. To the extent that

Interconnecting Customer's previous aggregate payments exceed Interconnecting Customer's cost responsibility under this agreement, the Company shall refund to Interconnecting Customer an amount equal to the difference within forty-five (45) days of the provision of such final accounting report.

- 8. In the event this Agreement is terminated for any reason, the Company shall refund to the Interconnecting Customer the portion of the above fee or any subsequent payment to the Company by the Interconnecting Customer that the Company did not expend or commit in performing its obligations under this Agreement. Payments for work performed shall not be subject to refunding except in accordance with Paragraph 11 below.
- 9. Nothing in this Agreement shall be interpreted to give the Interconnecting Customer immediate rights to wheel over or interconnect with the Company's EPS.
- 10. Except as precluded by the laws of the State of Rhode Island and the Providence Plantations, Interconnecting Customer and Company shall each indemnify, defend and hold the other, its directors, officers, employees and agents (including, but not limited to, affiliates and contractors and their employees), harmless from and against all liabilities, damages, losses, penalties, claims, demands, suits and proceedings of any nature whatsoever for personal injury (including death) or property damages to unaffiliated third parties that arise out of, or are in any manner connected with, the performance of this Agreement by that party, except to the extent that such injury or damages to unaffiliated third parties may be attributable to the negligence or willful misconduct of the party seeking indemnification.

Notwithstanding the foregoing, the Interconnecting Customer hereby waives recourse against the Company and its Affiliates for, and releases the Company and its Affiliates from, any and all liabilities arising from or attributable to incomplete, inaccurate, or otherwise faulty information supplied by the Interconnecting Customer. Moreover, with respect to an ISRDG provided to a Renewable Interconnecting Customer, the Company may not be held liable or responsible if the actual costs exceed the estimate as long as the estimate was provided in good faith and the interconnection was implemented prudently the Company.

- 11. If either party materially breaches any of its covenants hereunder, the other party may terminate this Agreement by serving notice of same on the other party to this Agreement.
- 12. This agreement shall be construed and governed in accordance with the laws of the State of Rhode Island and the Providence Plantations.
- 13. All amendments to this Agreement shall be in written form executed by both Parties.
- 14. The terms and conditions of this Agreement shall be binding on the successors and assigns of either Party.
- 15. This Agreement will remain in effect for a period of up to two years from its effective date.
- 16. This Agreement may be terminated under the following conditions.
 - a) The Parties agree in writing to terminate the Agreement.
 - b) The Interconnecting Customer may terminate this agreement at any time by providing written notice to Company.
 - c) The Company may terminate this Agreement if the Interconnecting Customer either: (1) has not paid the fee or, (2) has not responded to requests for further information in accordance with provisions in the Interconnection Tariff.

R.I.P.U.C. No. 2078 Canceling R.I.P.U.C. No. 2007 Sheet 3

The Narragansett Electric Company Standards for Connecting Distributed Generation

Interconnec	eting Customer:	Narragans	sett Electric Company d/b/a National Grid:
Name: Title:	Mara Depasquale Managing Menyber	Name: Title:	
Date:	4.3.7014/	Date:	
Signature:	Mulil	Signature:	

EXHIBIT G

Exhibit E – Impact Study or ISRDG Agreement

This Agreement, dated	, is entered into by and between	Wind Energy Development, LLC
("Interconnecting Customer") and the	Company, for the purpose of setting t	
for conducting an Impact Study relati	ve to the Standard Process as defined	in Section 1.0 and outlined in
Section 3.0 of the Interconnection Tar	riff. This Impact Study pertains to Ap	plication Numbers 14319785,
14462941, 15640455, 15772951, 175	99370, and 17600293 (the Interconnection	cting Customer's application ID
numbers).		

- 1. The Interconnecting Customer agrees to provide, in a timely and complete manner, all additional information and technical data necessary for the Company to conduct the Impact Study not already provided in the Interconnecting Customer's application.
- 2. All work pertaining to the Impact Study that is the subject of this Agreement will be approved and coordinated only through designated and authorized representatives of the Company and the Interconnecting Customer. Each party shall inform the other in writing of its designated and authorized representative, if different than what is in the application.
- 3. Where there are other potentially Affected Systems, and no single Party is in a position to prepare an Impact Study covering all potentially Affected Systems, the Company will coordinate but not be responsible for the timing of any additional studies required to determine the impact of the interconnection request on other potentially Affected Systems. The Interconnecting Customer will be directly responsible to the potentially Affected System operators for all costs of any additional studies required to evaluate the impact of the interconnection on the potentially Affected Systems. The Company will not proceed with this Impact Study without the Interconnecting Customer's consent to have the other studies conducted.
- 4. If the Company determines, in accordance with Good Utility Practice, that the System Modifications to the Company EPS are not substantial, the Impact Study will determine the scope and cost of the modifications. If the Company determines, in accordance with Good Utility Practice, that the System Modifications to the Company EPS are substantial, the Impact Study will produce an estimate for the modification costs (within ±25%) and a Detailed Study Agreement and its estimated cost.
- 5. Impact Study, together with any additional studies contemplated in Paragraph 3, shall form the basis for the Interconnecting Customer's proposed use of the Company EPS and shall be furthermore utilized in obtaining necessary third-party approvals of any required facilities and requested distribution services. The Interconnecting Customer understands and acknowledges that any use of study results by the Interconnecting Customer or its agents, whether in preliminary or final form, prior to NEPOOL 18.4 approval, should such approval be required, is completely at the Interconnecting Customer's risk.
- 6. The Impact Study fee of \$50,000.00 (except as noted below) is due in full prior to the execution of the Impact Study. For a Renewable Interconnecting Customer the ISRDG Study fee is as per Table 2 in Section 3.5 of the interconnection tariff.
- 7. Final Accounting. Upon request by the Interconnecting Customer, the Company within ninety (90) business days after completion of the construction and installation of the System Modifications described in an attached exhibit to the Interconnection Service Agreement, shall provide Interconnecting Customer with a final accounting report of any difference between (a) Interconnecting

Customer's cost responsibility under the Interconnection Service Agreement for the actual cost of such System Modifications, and (b) Interconnecting Customer's previous aggregate payments to the Company for such System Modifications. To the extent that Interconnecting Customer's cost responsibility in the Interconnection Service Agreement exceeds Interconnecting Customer's previous aggregate payments, the Company shall invoice Interconnecting Customer and Interconnecting Customer shall make payment to the Company within forty-five (45) days. To the extent that Interconnecting Customer's previous aggregate payments exceed Interconnecting Customer's cost responsibility under this agreement, the Company shall refund to Interconnecting Customer an amount equal to the difference within forty-five (45) days of the provision of such final accounting report.

- 8. In the event this Agreement is terminated for any reason, the Company shall refund to the Interconnecting Customer the portion of the above fee or any subsequent payment to the Company by the Interconnecting Customer that the Company did not expend or commit in performing its obligations under this Agreement. Payments for work performed shall not be subject to refunding except in accordance with Paragraph 11 below.
- 9. Nothing in this Agreement shall be interpreted to give the Interconnecting Customer immediate rights to wheel over or interconnect with the Company's EPS.
- 10. Except as precluded by the laws of the State of Rhode Island and the Providence Plantations, Interconnecting Customer and Company shall each indemnify, defend and hold the other, its directors, officers, employees and agents (including, but not limited to, affiliates and contractors and their employees), harmless from and against all liabilities, damages, losses, penalties, claims, demands, suits and proceedings of any nature whatsoever for personal injury (including death) or property damages to unaffiliated third parties that arise out of, or are in any manner connected with, the performance of this Agreement by that party, except to the extent that such injury or damages to unaffiliated third parties may be attributable to the negligence or willful misconduct of the party seeking indemnification.

Notwithstanding the foregoing, the Interconnecting Customer hereby waives recourse against the Company and its Affiliates for, and releases the Company and its Affiliates from, any and all liabilities arising from or attributable to incomplete, inaccurate, or otherwise faulty information supplied by the Interconnecting Customer. Moreover, with respect to an ISRDG provided to a Renewable Interconnecting Customer, the Company may not be held liable or responsible if the actual costs exceed the estimate as long as the estimate was provided in good faith and the interconnection was implemented prudently the Company.

- 11. If either party materially breaches any of its covenants hereunder, the other party may terminate this Agreement by serving notice of same on the other party to this Agreement.
- 12. This agreement shall be construed and governed in accordance with the laws of the State of Rhode Island and the Providence Plantations.
- 13. All amendments to this Agreement shall be in written form executed by both Parties.
- 14. The terms and conditions of this Agreement shall be binding on the successors and assigns of either Party.
- 15. This Agreement will remain in effect for a period of up to two years from its effective date.

- 16. This Agreement may be terminated under the following conditions.
 - a) The Parties agree in writing to terminate the Agreement.
 - b) The Interconnecting Customer may terminate this agreement at any time by providing written notice to Company.
 - c) The Company may terminate this Agreement if the Interconnecting Customer either: (1) has not paid the fee or, (2) has not responded to requests for further information in accordance with provisions in the Interconnection Tariff.

Interconne	ecting Customer:	Narragans	sett Electric Company d/b/a National Grid:
Name:	Mark DePasquale	Name:	
Title:	CEO	Title:	
Date:	8/15/14	Date:	
Signature:	Mark Deparqual KB	Signature:	

EXHIBIT H

Kennedy, John C.

From: Kennedy, John C.

Sent: Friday, September 12, 2014 2:42 PM

To: George, Caleb; Enayati, Babak; Kamal, Rashed; Teixeira, John M.; 'Nick Reis'; Ryan, James W. (US-WBRO-Ops); 'Mark(Wind)

Depasquale'; 'David Colombo'

Subject: RE: WED Turbine Meeting Notes

All,

Below are my notes from our meeting yesterday that we had reviewed. Please provide comment if you feel I missed anything.

WED will:

- Provide UL listing documentation and 1741 compliance documentation as soon as able
- Provide verification that turbines have active anti-islanding protection
- Revise one lines to show:
 - Effectively grounded systems
 - o Impedance information of grounding banks
- Y-grd / Y-grd transformers(preferred by turbine mfg.)
- Stability Model of turbines
- Flicker data of turbines per template and date provided by NGrid today.
- Pole numbers of POI's complete
- Pole numbers of POI's on one-lines
- Contact ISO help desk to initiate discussion
- Contact Verizon/Cable Co's to initiate POTS line, DTT leased line(if req'd), ISO RTU line(if req'd)

NGrid will:

- Provide Flicker Data templates and necessary data complete
- Provide ISO Operation data OP-14, 18 and contact information complete
- Provide PSSE modeling template –
- Request Transmission Planning Study cases be opened

Discussion other than above:

- ISO Process / Requirements expected:
 - o Two separate Transmission Planning Studies will be required

- Lengthy process, concurrent to Impact Study once information is locked down, exceeds impact study timeline
- Many aspects of ISO process and timeline NGrid does not control
- Customer need date: December 2015
- Generally felt that Distribution and Transmission systems will handle proposed 15mW's completed impact study to confirm and detail System Modifications to do so.
- Overvoltage protection, 3V0, will be required at Coventry Station transformer and at both Hopkins Hill Station transformers
- DTT will most likely be required if active anti-islanding protection is not provided. May be required if both UL listing and active anti-islanding is provided. Completed Impact Study will provide determination.
- DTT communication options:
 - Verizon; most comfortable but timely
 - Line of Sight
 - Fiber
- Estimated Timelines:
 - o D-line design 3months
 - D-line construction; 6-9 mo's
 - Substation design and construction; 72-80 weeks
 - o Estimated timelines discussed will be refined and provided in completed Impact Study
- Station supply line outage coordination can add to construction timelines estimated.

John Kennedy

national**grid**

Lead Technical Support Consultant - RI Technical Sales and Engineering Support

Office: 401-784-7221

Please select the appropriate link below for the latest DG information:

National Grid's DG Website(RI) RIPUC No.2078 Standards for Connecting Distributed Generation RIPUC No.2075 Net Metering Provision

ESB No.756 Requirements for Parallel Generation

----Original Appointment-----**From:** Kennedy, John C.

Sent: Wednesday, September 03, 2014 2:48 PM

To: Kennedy, John C.; George, Caleb; Enayati, Babak; Kamal, Rashed; Teixeira, John M.; Piekarz, Jeannie; 'Nick Reis'; Ryan, James W. (US-WBRO-Ops);

'Mark(Wind) Depasquale'; David Colombo

Cc: Hayduk, Brian

Subject: WED Turbine Meeting

When: Thursday, September 11, 2014 9:30 AM-11:00 AM (GMT-05:00) Eastern Time (US & Canada).

Where: CR- Providence - P(25) Melrose St - Executive Board Room

Mark, Dave,

Below are items for discussion during tomorrow's meeting.

Looking forward to seeing you both. Please call my cell when you arrive and I will meet you in the Customer Lobby. John

- Further documentation regarding UL1741 listing.
- One line diagrams require update to provide effectively grounded sources.
- Site diagrams need update for clearer locations of turbines (distances to closest intersections and if possible pole numbers).
- Due to the size of the sites, ISO-NE reporting will be required. Customer should start that process with them.
 - o Additionally a PPA study may be required to be completed by National Grid's Transmission Planning group.

Transmission Planning said I can represent them so here is some things we discussed:

- 1. Transmission Planning see this as 2 separate studies separate PPA's probably same transmission planning engineer so that means double the time
 - a. discuss the process both internal and ISO
- 2. In the past there have been problems obtaining wind stability models even if a stability study is not required ISO wants the stability models
- 3. OP-14 requirements would apply and the customer probably has not thought of that

EXHIBIT I

Ramos, Adam M.

From: David Colombo <Dave@powerengineersllc.com>

Sent: Thursday, October 09, 2014 8:44 AM

To: Kennedy, John C.; George, Caleb; Mark(Wind) Depasquale

Subject: Fwd: Abschlussbericht Flicker & Voltage Evaluation

Attachments: ATT00001.htm; 141008-Final Report- Flicker and Voltage Evaluation- Coventry-Rhode

Island.Rev01.pdf

John / Caleb

Attached are the flicker results from Vensys. Can you confirm this is the information needed?

Sincerely, Dave

David J. Colombo, P.E. Power Engineers, LLC (508) 612-0382

Dave@PowerEngineersLLC.com

----- Forwarded message -----

From: **Theo Peters** < <u>T.Peters@vensys.de</u>>

Date: 2014-10-09 8:39 GMT-04:00

Subject: Fwd: Abschlussbericht Flicker & Voltage Evaluation

To: David Colombo < Dave@powerengineersllc.com>, Mark DePasquale < md@wedenergy.com>

David, Hope this fits the NG requirements. Let me know if there are any questions.

Theo

Sent from my iPhone

Begin forwarded message:

From: "Patrick Feld" < <u>p.feld@renect.de</u>> **To:** "Theo Peters" < <u>T.Peters@vensys.de</u>>

Cc: "c.contini@renect.de" <c.contini@renect.de>

Subject: Abschlussbericht Flicker & Voltage Evaluation

Hallo Herr Peters,

anbei finden Sie den fertigen Bericht. Wie gewünscht wurde jede EZA erst mit einer Erzeugungseinheit, dann 2, 3 und 4 gerechnet. Die Werte sind alle ok. Bitte bestätigen Sie mir noch einmal mit einer kurzen Mail den Empfang des Berichts.

Viele Grüße P.Feld

M. Sc. Patrick Feld

Telefon <u>+49 681 9494-1645</u> Telefax <u>+49 681 9494-1647</u>

p.feld@renect.de<mailto:p.feld@renect.de>

ReNeCt GmbH St. Johanner Straße 101-105 66115 Saarbrücken Germany

Geschäftsführung: Christian Contini, Bernd Endres Sitz der Gesellschaft: Saarbrücken Registergericht Amtsgericht Saarbrücken Handelsregister B 100487

Diese E-Mail enthält vertrauliche und/oder rechtlich geschützte Informationen. Wenn Sie nicht der richtige Adressat sind oder diese E-Mail irrtümlich erhalten haben, informieren Sie bitte sofort den Absender und vernichten Sie diese Mail. Das unerlaubte Kopieren sowie die unbefugte Weitergabe dieser Mail sind nicht gestattet.

This e-mail may contain confidential and/or privileged information. If you are not the intended recipient (or have received this e-mail in error) please notify the sender immediately and destroy this e-mail. Any unauthorised copying, disclosure or distribution of the material in this e-mail is strictly forbidden.

Flicker and Voltage Evaluation Rhode Island 10/2014

Final Report

prepared by:

ReNeCt GmbH

M.Sc. Patrick Feld

St.Johanner Str. 101-105 66115 Saarbrücken

Tel:+49(681)9494-1645 Fax:+49(681)9494-1647 Email: <u>p.feld@renect.de</u>

Customer:

Vensys Energy AG Im Langental 6 66539 Neunkirchen

RelVeCt							
Titel	Flicker and Vo	oltage Eva	aluation Rhode Island		·		
Index	Date	Name	Amendements	Approved	Date		
01	08.10.2014	P.Feld	Document created	C.Contini C. Carller	09.10.14		

08.10.2014 Vensys Energy AG

Summary

On behalf of Vensys Energy AG, ReNeCt GmbH has carried out an evaluation of flicker and voltage variation of 3 wind farms of the project coventry.

The following parameters were checked:

- Flicker emission during continuous operation
- Flicker emissions due to switching operations (10 minutes)
- Flicker emissions due to switching operations (120 minutes)
- Voltage change due to a switching operation

Conclusion:

The results show no conspicuities. All checked parameters are below the given limit values. No recommendations needed.

08.10.2014 Vensys Energy AG

Table of content

1		Purp	ose	1
			ed data	
			ulation	
	3.1	1	Wind farm at Perry Hill/ Piggy Lane, Unit 1; 2; 2A and 2B	2
	3.2	2	Wind farm at Flat River Road, Unit 3 and 4	6
	3.3	3	Wind farm at Victory Highway, Unit 5; 6, 6A and 6B	8
4		Cond	clusion and recommendations	12
5		Table	e of figures	13

08.10.2014
Vensys Energy
AG
Seite 1 von 19

1 Purpose

On behalf of Vensys Energy AG, ReNeCt GmbH has carried out an evaluation of flicker and voltage variation of 3 wind farms of the project Coventry which were connected to different grid points. These points are:

- Perry Hill/ Piggy Lane (units 1; 2; 2A and 2B)
- Flat River Road (units 3 and 4)
- Victory Highway (units 5; 6; 6A and 6B)

The detailed connection is to be found in Figure 1 to Figure 4.

In the calculation the following parameters were determined:

- Flicker emission during continuous operation
- Flicker emissions due to switching operations (10 minutes)
- Flicker emissions due to switching operations (120 minutes)
- Voltage change due to a switching operation

2 Rated data

The parameters of the wind turbine Vensys 82 SDL were taken from the test report of the unit certificate (Figure 5). The grid data were sent by mail by Mr. Nicola Reis (ControlPoint Technologies, Inc.) (Figure 6).

08.10.2014
Vensys Energy
AG
Seite 2 von 19

3 Calculation

The calculations were explained after the desired example. Moreover the equations from the example were also used. The "worst" parameters of the wind turbine were taken for the calculation, to get worst case results.

3.1 Wind farm at Perry Hill/ Piggy Lane, unit 1; 2; 2A and 2B

3.1.1 One turbine in service

			Grid Phase	Angle
Wind Turbine Data	Symbol	<u>Unit</u>	70°	85°
Flicker Coefficent	С		0,970	0,880
Flicker Step Factor for grid phase angle of 70°/85°	K _f	0	0,093	0,096
Voltage variation factor for grid phase angle of 70°/85°	Ku		0,162	-0,160
Rated power of wind turbine	Sn	MVA	1,5	1,5
Number of identical turbines	N _{wt}		1	1
Number of switching operations per turbine over 10 minutes				
-for startup at cut-in wind speed			10	10
-for startup at rated wind speed	N ₁₀		1	1
-for worst case of switching between generators				
Number of switching operations per turbine over 120 minutes				
-for startup at cut-in wind speed			12	12
-for startup at rated wind speed	N ₁₂₀		12	12
-for worst case of switching between generators				
Sytem Data	6		27.70	
Short circuit level at PCC	S _k	MVA	27,70	
Grid impedance phase angle	C (NC)		71,66	
Short circuit ratio relative to wind farming	S _{k/} (N _{wt} X S _n)		18,47	
Cited				
<u>Criteria</u>	D		0.7	
Flicker emission during continous operation			0,7	
Flicker emissions due to switching operations (10 minutes)			0,9	
Flicker emissions due to switching operations (120 minutes)	-		0,7	
Voltage change due to a switching operation	Δu			
-1 change per minute due to 1 turbine		%	2,0	
-10 change per minute due to 10 turbine		%	1,2 1,0	
-25 change per minute due to 10 turbine		70	1,0	
Calculations				
Flicker emission during continous operation	P _t		0,053	0,048
Flicker emissions due to switching operations (10 minutes)			0,185	0,191
Flicker emissions due to switching operations (120 minutes)		0/	0,087	0,090
Voltage change due to a switching operation	Δu	%	0,009	-0,009
Critaria Chael				
<u>Criteria Check</u> Flicker emission during continous operation	D.		ОК	ОК
Flicker emissions due to switching operations (10 minutes)	**		OK	OK
Flicker emissions due to switching operations (120 minutes)			OK	OK
Voltage change due to a switching operation	Δu		OK	OK

08.10.2014
Vensys Energy
AG
Seite 3 von 19

3.1.2 Two turbines in service

Flicker Step Factor for grid phase angle of 70/85 ° K _f ° 0,093	0,880 0,096 0,160 1,5 2
Flicker Step Factor for grid phase angle of 70/85 $^{\circ}$ K $_{\rm f}$ $^{\circ}$ 0,093 Voltage variation factor for grid phase angle of 70/85 $^{\circ}$ K $_{\rm u}$ 0,162 -	0,096 0,160 1,5
	1,5
Rated nower of wind turbinals IMM/A 1 E	
nated power of willu turbine [5] [IVIVA] 1,5	2
Number of identical turbines N _{wt} 2	
Number of switching operations per turbine over 10 minutes	
-for startup at cut-in wind speed 10	10
-for startup at rated wind speed N_{10} 1	1
-for worst case of switching between generators	
Number of switching operations per turbine over 120 minutes	
-for startup at cut-in wind speed 12	12
-for startup at rated wind speed N_{120} 12	12
-for worst case of switching between generators	
Sytem Data	
Short circuit level at PCC S _k MVA 27,70	
Grid impedance phase angle ° 71,66	
Short circuit ratio relative to wind farming $S_{k}/(N_{wt} \times S_n)$ 9,23	
<u>Criteria</u>	
Flicker emission during continous operation P _{lt} 0,7	
Flicker emissions due to switching operations (10 minutes) P _{st} 0,9	
Flicker emissions due to switching operations (120 minutes) P _{lt} 0,7	
Voltage change due to a switching operation Δu	
-1 change per minute due to 1 turbine	
-10 change per minute due to 10 turbine	
-25 change per minute due to 10 turbine	
<u>Calculations</u>	
Flicker emission during continous operation P _{lt} 0,074	0,067
Flicker emissions due to switching operations (10 minutes) P _{st} 0,229	0,237
Flicker emissions due to switching operations (120 minutes) P _{lt} 0,108	0,111
Voltage change due to a switching operation Δu 0,009 -	0,009
Criteria Check	
Flicker emission during continous operation P _{lt} OK	ОК
Flicker emissions due to switching operations (10 minutes) P _{st} OK	ОК
Flicker emissions due to switching operations (120 minutes) P _{lt} OK	ОК
Voltage change due to a switching operation Δu OK	ОК

08.10.2014
Vensys Energy
AG
Seite 4 von 19

3.1.3 Three turbines in service

			Grid Phase	e Angle
Wind Turbine Data	Symbol	<u>Unit</u>	70°	85°
Flicker Coefficent	С		0,970	0,880
Flicker Step Factor for grid phase angle of 70°/85°	K _f	0	0,093	0,096
Voltage variation factor for grid phase angle of 70°/85 $^{\circ}$	K _u		0,162	-0,160
Rated power of wind turbine	S _n	MVA	1,5	1,5
Number of identical turbines	N _{wt}		3	3
Number of switching operations per turbine over 10 minutes				
-for startup at cut-in wind speed			10	10
-for startup at rated wind speed	N ₁₀		1	1
-for worst case of switching between generators				
Number of switching operations per turbine over 120 minutes				
-for startup at cut-in wind speed			12	12
-for startup at rated wind speed	N ₁₂₀		12	12
-for worst case of switching between generators				
Sytem Data				
Short circuit level at PCC	S _k	MVA	27,70	
Grid impedance phase angle		0	71,66	
Short circuit ratio relative to wind farming	$S_{k/}(N_{wt} \times S_n)$		6,16	
Criteria				
Flicker emission during continous operation	P.,		0,7	
Flicker emissions due to switching operations (10 minutes)			0,9	
Flicker emissions due to switching operations (120 minutes)			0,7	
Voltage change due to a switching operation	Δu	0/	2.0	
-1 change per minute due to 1 turbine		%	2,0 1,2	
-10 change per minute due to 10 turbine -25 change per minute due to 10 turbine		%	1,2	
-23 change per minute due to 10 turbine		/0	1,0	
Calculations			0.05	0.005
Flicker emission during continous operation			0,091	0,083
Flicker emissions due to switching operations (10 minutes)	P _{st}		0,260	0,269
Flicker emissions due to switching operations (120 minutes)	P _{lt}		0,122	0,126
Voltage change due to a switching operation	Δu		0,039	-0,009
Criteria Check				
Flicker emission during continous operation	P _{lt}		ОК	ОК
Flicker emissions due to switching operations (10 minutes)	P _{st}		ОК	ОК
Flicker emissions due to switching operations (120 minutes)	P _{lt}		ОК	ОК
Voltage change due to a switching operation	Δu		ОК	ОК

08.10.2014
Vensys Energy
AG
Seite 5 von 19

3.1.4 Four turbines in service

			Grid Phase	e Angle
Wind Turbine Data	Symbol	<u>Unit</u>	70°	85°
Flicker Coefficent	С		0,970	0,880
Flicker Step Factor for grid phase angle of 70°/85°	K _f	0	0,093	0,096
Voltage variation factor for grid phase angle of 70°/85 $^{\circ}$	Ku		0,162	-0,160
Rated power of wind turbine	S _n	MVA	1,5	1,5
Number of identical turbines	N _{wt}		4	4
Number of switching operations per turbine over 10 minutes				
-for startup at cut-in wind speed			10	10
-for startup at rated wind speed	N ₁₀		1	1
-for worst case of switching between generators				
Number of switching operations per turbine over 120 minutes				
-for startup at cut-in wind speed			12	12
-for startup at rated wind speed	N ₁₂₀		12	12
-for worst case of switching between generators				
Sytem Data				
Short circuit level at PCC	S _k	MVA	27,70	
Grid impedance phase angle		•	71,66	
Short circuit ratio relative to wind farming	Sk/(Nwt X Sn)		4,62	
	- K/ (WC - 11/		,-	
<u>Criteria</u>				
Flicker emission during continous operation	P _{lt}		0,7	
Flicker emissions due to switching operations (10 minutes)	P _{st}		0,9	
Flicker emissions due to switching operations (120 minutes)	P _{lt}		0,7	
Voltage change due to a switching operation	Δu			
-1 change per minute due to 1 turbine		%	2,0	
-10 change per minute due to 10 turbine		%	1,2	
-25 change per minute due to 10 turbine		%	1,0	
Calculations				
Flicker emission during continous operation	Pıt		0,105	0,095
Flicker emissions due to switching operations (10 minutes)	-		0,284	0,294
			·	·
Flicker emissions due to switching operations (120 minutes)	7		0,134	0,138
Voltage change due to a switching operation	Δu		0,053	-0,009
Criteria Check				
Flicker emission during continous operation	P _{lt}		ОК	ОК
Flicker emissions due to switching operations (10 minutes)	P _{st}		ОК	ОК
Flicker emissions due to switching operations (120 minutes)	P _{lt}		ОК	ОК
Voltage change due to a switching operation	Δu		ОК	OK

08.10.2014
Vensys Energy
AG
Seite 6 von 19

3.2 Wind farm at Flat River Road, unit 3 and 4

3.2.1 One turbine in service

			Grid Phase	e Angle
Wind Turbine Data	Symbol	<u>Unit</u>	50°	70°
Flicker Coefficent	С		1,530	0,970
Flicker Step Factor for grid phase angle of 50°/70 $^{\circ}$	K _f	۰	0,104	0,093
Voltage variation factor for grid phase angle of 50°/70 $^{\circ}$	K _u		0,521	0,162
Rated power of wind turbine	S _n	MVA	1,5	1,5
Number of identical turbines	N _{wt}		1	1
Number of switching operations per turbine over 10 minutes				
-for startup at cut-in wind speed			10	10
-for startup at rated wind speed	N ₁₀		1	1
-for worst case of switching between generators				
Number of switching operations per turbine over 120 minutes				
-for startup at cut-in wind speed			12	12
-for startup at rated wind speed	N ₁₂₀		12	12
-for worst case of switching between generators				
Sytem Data				
Short circuit level at PCC	S_k	MVA	26,20	
Grid impedance phase angle		0	67,91	
Short circuit ratio relative to wind farming	$S_{k/}(N_{wt} \times S_n)$		17,47	
Criteria				
Flicker emission during continous operation	P _{I+}		0,7	
Flicker emissions due to switching operations (10 minutes)			0,9	
Flicker emissions due to switching operations (120 minutes)			0,7	
5 . ,			0,7	
Voltage change due to a switching operation	Δυ	%	2	
-1 change per minute due to 1 turbine		%		
-10 change per minute due to 10 turbine -25 change per minute due to 10 turbine		%	1,2 1	
-25 change per minute due to 10 turbine		70	1	
Calculations	D		0.000	0.050
Flicker emission during continous operation			0,088	0,056
Flicker emissions due to switching operations (10 minutes)	P _{st}		0,219	0,196
Flicker emissions due to switching operations (120 minutes)	P _{lt}		0,103	0,092
Voltage change due to a switching operation	Δu	%	0,030	0,009
Criteria Check				
Flicker emission during continous operation	P _{lt}		ОК	ОК
Flicker emissions due to switching operations (10 minutes)	P _{st}		ОК	ОК
Flicker emissions due to switching operations (120 minutes)	P _{lt}		ОК	ОК
Voltage change due to a switching operation	Δu		ОК	ОК

08.10.2014
Vensys Energy
AG
Seite 7 von 19

3.2.2 Two turbines in service

			Grid Phase	e Angle
Wind Turbine Data	Symbol	<u>Unit</u>	50°	70°
Flicker Coefficent	С		1,530	0,970
Flicker Step Factor for grid phase angle of 50/70°	K _f	0	0,104	0,093
Voltage variation factor for grid phase angle of 50/70 $^{\circ}$	K _u		0,521	0,162
Rated power of wind turbine	S _n	MVA	1,5	1,5
Number of identical turbines	N _{wt}		2	2
Number of switching operations per turbine over 10 minutes				
-for startup at cut-in wind speed			10	10
-for startup at rated wind speed	N ₁₀		1	1
-for worst case of switching between generators				
Number of switching operations per turbine over 120 minutes				
-for startup at cut-in wind speed			12	12
-for startup at rated wind speed	N ₁₂₀		12	12
-for worst case of switching between generators				
Sytem Data				
Short circuit level at PCC	S _k	MVA	26,20	
Grid impedance phase angle		•	67,91	
Short circuit ratio relative to wind farming	Sk/(Nwt x Sn)		8,73	
· ·	K/ C III		,	
<u>Criteria</u>				
Flicker emission during continous operation	P _{lt}		0,7	
Flicker emissions due to switching operations (10 minutes)	P _{st}		0,9	
Flicker emissions due to switching operations (120 minutes)	P _{lt}		0,7	
Voltage change due to a switching operation	Δu			
-1 change per minute due to 1 turbine		%	2,0	
-10 change per minute due to 10 turbine		%	1,2	
-25 change per minute due to 10 turbine		%	1,0	
Calculations				
Flicker emission during continous operation	P _{I+}		0,124	0,079
Flicker emissions due to switching operations (10 minutes)			0,271	0,243
	**			
Flicker emissions due to switching operations (120 minutes)	-		0,128	0,114
Voltage change due to a switching operation	Δu		0,030	0,009
Criteria Check				
Flicker emission during continous operation	P _{lt}		ОК	ОК
Flicker emissions due to switching operations (10 minutes)	P _{st}		ОК	ОК
Flicker emissions due to switching operations (120 minutes)	P _{lt}		ОК	ОК
Voltage change due to a switching operation	Δu		ОК	ОК

08.10.2014
Vensys Energy
AG
Seite 8 von 19

3.3 Wind farm at Victory Highway, unit 5; 6, 6A and 6B

3.3.1 One turbine in service

			Grid Phase Angle	
Wind Turbine Data	Symbol	<u>Unit</u>	70°	85°
Flicker Coefficent	С		0,970	0,880
Flicker Step Factor for grid phase angle of 70 $^{\circ}$ /85 $^{\circ}$	K _f	0	0,093	0,096
Voltage variation factor for grid phase angle of 70°/85 $^{\circ}$	K _u		0,162	-0,160
Rated power of wind turbine	S _n	MVA	1,5	1,5
Number of identical turbines	N _{wt}		1	1
Number of switching operations per turbine over 10 minutes				
-for startup at cut-in wind speed			10	10
-for startup at rated wind speed	N ₁₀		1	1
-for worst case of switching between generators				
Number of switching operations per turbine over 120 minutes				
-for startup at cut-in wind speed			12	12
-for startup at rated wind speed	N ₁₂₀		12	12
-for worst case of switching between generators				
Sytem Data				
Short circuit level at PCC	S_k	MVA	19,20	
Grid impedance phase angle		0	72,74	
Short circuit ratio relative to wind farming	$S_{k/}(N_{wt} \times S_n)$		12,80	
Criteria				
Flicker emission during continous operation	P _{lt}		0,7	
Flicker emissions due to switching operations (10 minutes)	P _{st}		0,9	
Flicker emissions due to switching operations (120 minutes)	P ₁₆		0,7	
Voltage change due to a switching operation			5,7	
-1 change per minute due to 1 turbine		%	2,0	
-10 change per minute due to 10 turbine		%	1,2	
-25 change per minute due to 10 turbine		%	1,0	
25 shange per minate aue to 25 tanonie		, ,	2,0	
Calculations				
Flicker emission during continous operation	Plt		0,076	0,069
Flicker emissions due to switching operations (10 minutes)			0,267	0,276
Flicker emissions due to switching operations (120 minutes)			0,126	0,130
		%		
Voltage change due to a switching operation	Δu	70	0,013	-0,013
Cuitavia Chaele				
<u>Criteria Check</u> Flicker emission during continous operation	D.		ОК	ОК
Flicker emissions due to switching operations (10 minutes)			OK	OK
Flicker emissions due to switching operations (120 minutes)			ОК	OK
Voltage change due to a switching operation	Δu		OK	OK

08.10.2014
Vensys Energy
AG
Seite 9 von 19

3.3.2 Two turbines in service

			Grid Phase	e Angle
Wind Turbine Data	Symbol	<u>Unit</u>	70°	85°
Flicker Coefficent	С		0,970	0,880
Flicker Step Factor for grid phase angle of 70/85°	K _f	٥	0,093	0,096
Voltage variation factor for grid phase angle of 70/85 $^{\circ}$	K _u		0,162	-0,160
Rated power of wind turbine	S _n	MVA	1,5	1,5
Number of identical turbines	N _{wt}		2	2
Number of switching operations per turbine over 10 minutes				
-for startup at cut-in wind speed			10	10
-for startup at rated wind speed	N ₁₀		1	1
-for worst case of switching between generators				
Number of switching operations per turbine over 120 minutes				
-for startup at cut-in wind speed	N		12	12
 for startup at rated wind speed for worst case of switching between generators 	IN ₁₂₀		12	12
-ioi worst case of switching between generators				
Sytem Data				
Short circuit level at PCC	Sı	MVA	19,20	
Grid impedance phase angle		0	72,74	
Short circuit ratio relative to wind farming	S _{1/2} (N _{1.14} x S ₂₂)		6,40	
0.000 0	o k/(· · wt × o h/		5, 15	
Criteria				
Flicker emission during continous operation	P _{lt}		0,7	
Flicker emissions due to switching operations (10 minutes)	Pet		0,9	
Flicker emissions due to switching operations (120 minutes)			0,7	
Voltage change due to a switching operation	1		,	
-1 change per minute due to 1 turbine		%	2,0	
-10 change per minute due to 10 turbine		%	1,2	
-25 change per minute due to 10 turbine		%	1,0	
Calculations				
Flicker emission during continous operation	P _{lt}		0,107	0,097
Flicker emissions due to switching operations (10 minutes)	P _{st}		0,331	0,342
Flicker emissions due to switching operations (120 minutes)	P _{lt}		0,156	0,161
Voltage change due to a switching operation	Δu		0,013	-0,013
<u>Criteria Check</u>				
Flicker emission during continous operation			OK	OK
Flicker emissions due to switching operations (10 minutes)	P _{st}		OK	OK
Flicker emissions due to switching operations (120 minutes)	P _{lt}		ОК	OK
Voltage change due to a switching operation	Δu		ОК	OK

08.10.2014
Vensys Energy
AG
Seite 10 von 19

3.3.3 Three turbines in service

Mind Turking Date	Cumpled	Lloit	Grid Phase	e Angle 85°
Wind Turbine Data Flicker Coefficent	<u>Symbol</u>	<u>Unit</u>	0,970	o,880
Flicker Step Factor for grid phase angle of 70°/85°		0	0,970	0,096
				•
Voltage variation factor for grid phase angle of 70°/85°	ŭ		0,162	-0,160
Rated power of wind turbine	S _n	MVA	1,5	1,5
Number of identical turbines	N _{wt}		3	3
Number of switching operations per turbine over 10 minutes				
-for startup at cut-in wind speed			10	10
-for startup at rated wind speed	N ₁₀		1	1
-for worst case of switching between generators				
Number of switching operations per turbine over 120 minutes				
-for startup at cut-in wind speed			12	12
-for startup at rated wind speed	N ₁₂₀		12	12
-for worst case of switching between generators				
Sytem Data				
Short circuit level at PCC	S_k	MVA	19,20	
Grid impedance phase angle		۰	72,74	
Short circuit ratio relative to wind farming	$S_{k/}(N_{wt} \times S_n)$		4,27	
	.,			
Critoria				
<u>Criteria</u>	D		0.7	
Flicker emission during continous operation			0,7	
Flicker emissions due to switching operations (10 minutes)	P _{st}		0,9	
Flicker emissions due to switching operations (120 minutes)	P _{lt}		0,7	
Voltage change due to a switching operation	Δu			
-1 change per minute due to 1 turbine		%	2,0	
-10 change per minute due to 10 turbine		%	1,2	
-25 change per minute due to 10 turbine		%	1,0	
<u>Calculations</u>				
Flicker emission during continous operation	P _{lt}		0,131	0,119
Flicker emissions due to switching operations (10 minutes)	P _{st}		0,375	0,387
Flicker emissions due to switching operations (120 minutes)	P _{I+}		0,177	0,182
Voltage change due to a switching operation			0,057	-0,013
voltage change due to a switching operation			0,037	0,013
Criteria Check				
Flicker emission during continous operation	P _I		ОК	ОК
Flicker emissions due to switching operations (10 minutes)	**		OK	OK
Flicker emissions due to switching operations (120 minutes)			ОК	OK
Voltage change due to a switching operation	Δu		OK	OK

08.10.2014
Vensys Energy
AG
Seite 11 von 19

3.3.4 Four turbines in service

			Grid Phase	<u>Angle</u>
Wind Turbine Data	Symbol	<u>Unit</u>	70°	85°
Flicker Coefficent	С		0,970	0,880
Flicker Step Factor for grid phase angle of 70°/85°	K _f	0	0,093	0,096
Voltage variation factor for grid phase angle of 70°/85 $^{\circ}$	K _u		0,162	-0,160
Rated power of wind turbine	S _n	MVA	1,5	1,5
Number of identical turbines	N _{wt}		4	4
Number of switching operations per turbine over 10 minutes				
-for startup at cut-in wind speed			10	10
-for startup at rated wind speed	N ₁₀		1	1
-for worst case of switching between generators				
Number of switching operations per turbine over 120 minutes				
-for startup at cut-in wind speed	N.		12	12
-for startup at rated wind speed	N ₁₂₀		12	12
-for worst case of switching between generators				
Sytem Data				
Short circuit level at PCC	S ₁ .	MVA	19,20	
Grid impedance phase angle	S _K	0	72,74	
Short circuit ratio relative to wind farming	S. (N . x S)		3,20	
Short circuit ratio relative to wind raining	J _k /(IV _{wt} × J _n)		3,20	
Criteria				
Flicker emission during continous operation	P _{It}		0,7	
Flicker emissions due to switching operations (10 minutes)			0,9	
Flicker emissions due to switching operations (120 minutes)			0,7	
Voltage change due to a switching operation	1		0,7	
-1 change per minute due to 1 turbine	Δu	%	2,0	
-10 change per minute due to 10 turbine		%	1,2	
-25 change per minute due to 10 turbine		%	1,0	
- "				
<u>Calculations</u>				
Flicker emission during continous operation	P _{lt}		0,152	0,138
Flicker emissions due to switching operations (10 minutes)	P_{st}		0,410	0,424
Flicker emissions due to switching operations (120 minutes)	P _{lt}		0,193	0,199
Voltage change due to a switching operation	Δu		0,076	-0,013
<u>Criteria Check</u>				
Flicker emission during continous operation	P _{lt}		ОК	OK
Flicker emissions due to switching operations (10 minutes)	P _{st}		ОК	ОК
Flicker emissions due to switching operations (120 minutes)	P _{lt}		ОК	ОК
Voltage change due to a switching operation	Δu		ОК	ОК

08.10.2014

Vensys Energy

AG

Seite 12 von 19

4 Conclusion and recommendations

The results show no conspicuities. All checked parameters are below the given limit values. No recommendations needed.

08.10.2014
Vensys Energy
AG
Seite 13 von 19

5 Table of figures

Figure 1: Grid Connection of Units 1; 2; 2A and 2 B (Perry Hill /Piggy Lane)	14
Figure 2: Grid Connection of Unit 3 (Flat River Road)	
Figure 3: Grid Connection of Unit 4 (Flat River Road)	
Figure 4: Grid Connection of Units 5; 6; 6A and 6B	
Figure 5: Wind Turbine Data from the test report	
Figure 6: Grid data received for the calculation of the flicker and voltage variation.	
(top). Flat river Road (mid) and Victory Highway (below) are the corresponding conne	,

08.10.2014

Vensys Energy

AG

Seite 14 von 19

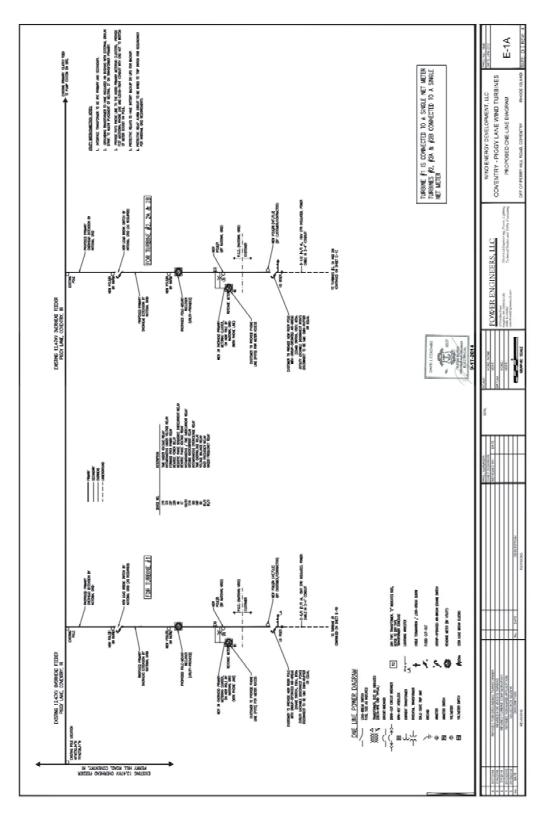


Figure 1: Grid Connection of Units 1; 2; 2A and 2 B (Perry Hill /Piggy Lane)

08.10.2014
Vensys Energy
AG
Seite 15 von 19

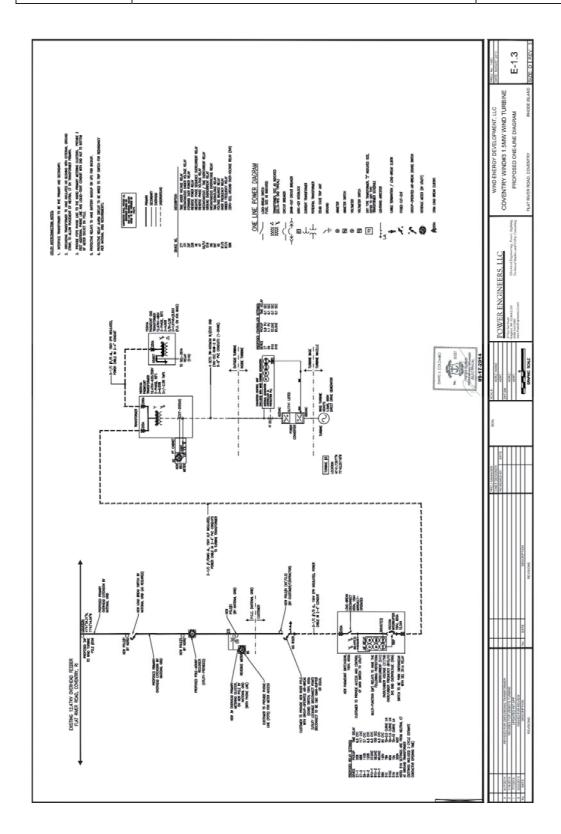


Figure 2: Grid Connection of Unit 3 (Flat River Road)

08.10.2014

Vensys Energy

AG

Seite 16 von 19

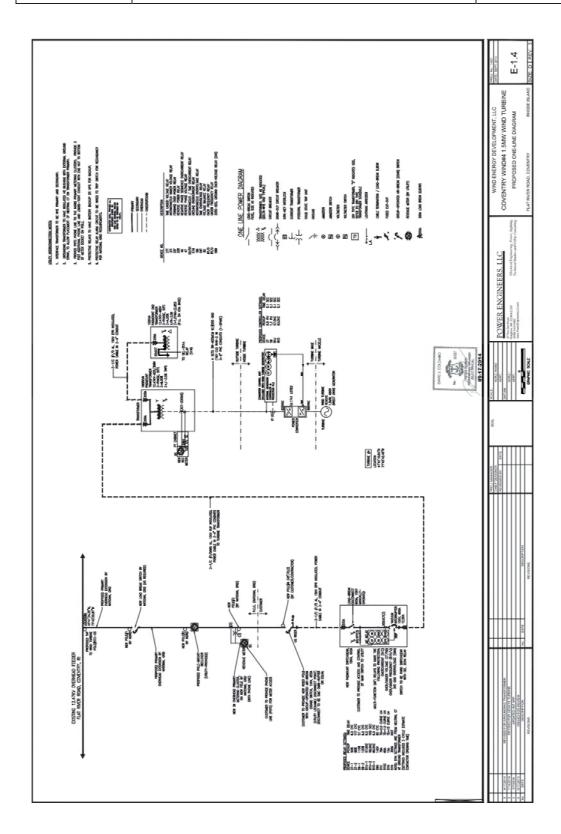


Figure 3: Grid Connection of Unit 4 (Flat River Road)

08.10.2014

Vensys Energy

AG

Seite 17 von 19

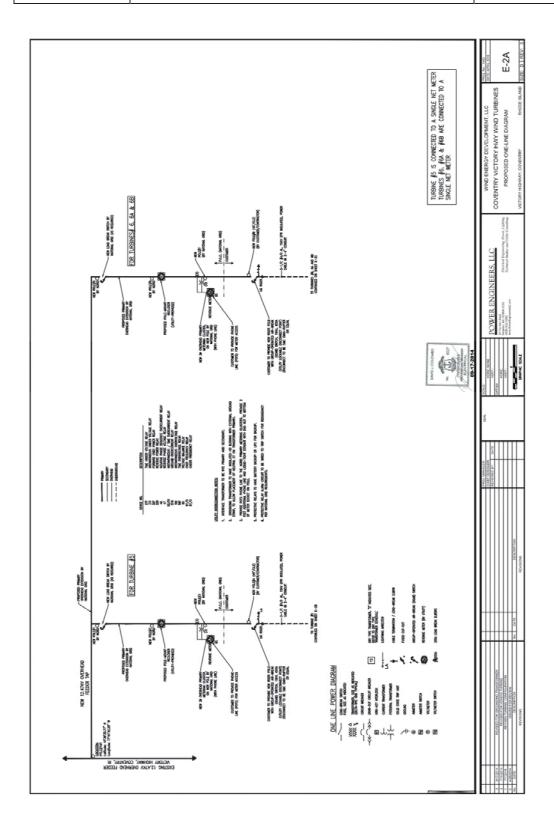


Figure 4: Grid Connection of Units 5; 6; 6A and 6B

08.10.2014
Vensys Energy
AG
Seite 18 von 19

Nenndaten / Rated data:

Nennscheinleistung S _n Rated apparent power S _n	1,500 kVA	Nennstrom I _n Rated current I _n	1,396.8 A
Nennfrequenz f _n rated frequency f _n	50 Hz	Nennspannung U _n rated Voltage U _n	620 V

Flicker:

	,		7	
Netzimpedanzwinkel/	30°	50°	70°	85°
Network impedance phase angle, yk				
Mittlere Jahreswindgeschwindigkeit/ Annual average wind speed, va (m/s)	Flickerkoeffizient/Flicker coefficient, c(ψ _k , ν _a)			
v _a = 6.0 m/s	1.29	1.53	0.97	0.88
v _a = 7.5 m/s	1.40	1.21	0.97	0.87
v _a = 8.5 m/s	1.45	1.25	0.97	0.87
v _a = 10.0 m/s	1.50	1.28	0.97	0.87

Schalthandlungen/Switching operations:

Contained and South Control of Co				
Schaltvorgang/Case of switching operation	Einschalten bei Einschaltwind/Start-up at cut-in wind speed			
Max. Anzahl an Schalthandlungen, N ₁₀ Max. number of switching operations, N ₁₀	10			
Max. Anzahl an Schalthandlungen, N ₁₂₀ Max. number of switching operations, N ₁₂₀	12			
Netzimpedanzwinkel/Grid impedance angle	30°	50°	70°	85°
Spannungsänderungsfaktor/ Voltage change factor, k _U (ψ _k)	0.023	0.012	-0.001	-0.010
Flickerformfaktor/ Flicker step factor, $k_f(\psi_k)$	0.081	0.069	0.058	0.057

Schaltvorgang/Case of switching operation	Einschalten bei Nennwind/Start-up at rated wind speed			
Max. Anzahl an Schalthandlungen, N ₁₀ Max. number of switching operations, N ₁₀	1			
Max. Anzahl an Schalthandlungen, N ₁₂₀ Max. number of switching operations, N ₁₂₀	12			
Netzimpedanzwinkel/Grid impedance angle	30°	50°	70°	85°
Spannungsänderungsfaktor/ Voltage change factor, k _U (ψ _k)	0.816	0.521	0.162	-0.124
Flickerformfaktor/ Flicker step factor, k _f (ψ _k)	0.121	0.104	0.089	0.088

Schaltvorgang/Case of switching operation	Seviceabschaltung bei Nennleistung/Cut off at rated power			
Max. Anzahl an Schalthandlungen, N ₁₀ Max. number of switching operations, N ₁₀	1			
Max. Anzahl an Schalthandlungen, N ₁₂₀ Max. number of switching operations, N ₁₂₀	12			
Netzimpedanzwinkel/Grid impedance angle	30°	50°	70°	85°
Spannungsänderungsfaktor/ Voltage change factor, k _U (ψ _k)	0.802	0.496	0.130	-0.160
Flickerformfaktor/ Flicker step factor, $k_f(\psi_k)$	0.068	0.082	0.093	0.096
Schlechtester Wert aller Schaltvorgänge, k _{imax} / Worst case all switching operation, k _{imax}	1.142	`		

08.10.2014
Vensys Energy
AG
Seite 19 von 19

WED 1, 2, 2A, & 2B POI Perry Hill/Piggy Fault DATA Perry Hill & Flat River Reconductored	AMPS	MVA	X/R	Ro/X1	Xo/X1
Single Phase	854.4	19	2.609	2.60962	2.30792
Three Phase	1247	27.7	3.01595	0.98764	2.30792
THE	THEVENIN IMPEDANCE (OHM)				
Positive sequence	Negative Sequence	Zero Sequence			
1.86734+j5.63181	1.86735+j5.63173	5.56218+j12.9978			

		Г	ſ	ı	1
WED 3 & 4 POI					
Fault DATA 4/0 flat	****	2 43 4 4	V/D	5 //4	V /V4
River	AMPS	MVA	X/R	Ro/X1	Xo/X1
Reconductored					
Single Phase	803	17.8	2.46399	1.04629	2.32746
Three Phase	1178	26.2	2.46399	1.04629	2.32746
THEVENIN IMPEDANCE (OHM)					
Positive sequence	Negative Sequence	Zero Sequence			
2.10129+j5.91929	2.1013+j 5.9192	6.19331+j13.7769			

WED 5, 6, 6A & 6B POI Fault DATA	AMPS	MVA	X/R	Ro/X1	Xo/X1
Single Phase	701	15.6	3.21898	0.4655	1.73289
Three Phase	863	19.2	3.21898	0.4655	1.73289
THEVE	NIN IMPEDANCE (OHM	1)			
Positive sequence	Negative Sequence	Zero Sequence			
2.82348+j8.13514	2.82356+j8.13525	3.7869+j14.0973			

EXHIBIT J

From: David Colombo < Dave@powerengineersllc.com>

Sent: Wednesday, October 29, 2014 10:56 AM

To: Mark(Wind) Depasquale; Kennedy, John C.; George, Caleb; Theo Peters

Subject: WED - Coventry 1, 2, 2A, 2B One-Lines

Attachments: Coventry Wind 1 2 2A 2B One-Line Rev 10-29-2014.pdf

John

Per our last meeting on 10/15, attached are the revised one-lines for Coventry 1, 2, 2A and 2B wind turbines. The changes reflect the new pole area at Perry Hill Road and the customer installing the underground feeders to the intersection of Piggy Lane and Perry Hill for interconnection. Please let me know if you have any questions.

Sincerely, Dave

David J. Colombo, P.E. Power Engineers, LLC (508) 612-0382 Dave@PowerEngineersLLC.com

From: Kennedy, John C. < John.Kennedy@nationalgrid.com>

Sent: Tuesday, November 04, 2014 3:41 PM

To: 'Mark(Wind) Depasquale'; 'David Colombo'; George, Caleb; Kamal, Rashed; Ryan, James

W. (US-WBRO-Ops); 'nreis@controlpointtech.com'

Subject:WED Coventry 1-6: 10/31 Meeting NotesAttachments:WED_CombinedStudyChecklist_10-31-14.xlsx

All,

Please review attached and let me know if anything needs editing.

Mark,

Regarding DTT and communication required point to point: Please provide us with your proposed plan, for our review/approval, detailing how all generator breakers will be taken off line(tripped) within the 2 second tariff requirement. This is needed for us to progress the study and will impact substation modifications. I believe Vensys was to provide you with some detail with a proposal for bring the leased line to one point within project sites.

Note: other than the leased line for DTT; a point to point radio system would be an option. It would require a 3rd party to study the line of sight potential from you turbine sites to our substations.

Please contact me with any questions.

Thanks,

John Kennedy

nationalgrid

Lead Technical Support Consultant - RI Technical Sales and Engineering Support

Office: 401-784-7221

Please select the appropriate link below for the latest DG information:

National Grid's DG Website(RI) RIPUC No.2078 Standards for Connecting Distributed Generation RIPUC No.2075 Net Metering Provision ESB No.756 Requirements for Parallel Generation

Wind Energy Development: WTG Projects; Coventry One -Six

Impact Study Progress Meeting Checklist

Impact Study Progress Meeting Checklist	Responsible	Date	Τ	1	Ι
Item	Party	Identified	Date Closed	Status	Notes
item	raity	identined	Date Closed	Status	Notes
					WED provided on
Provide Stability Model of Turbines for Trans.					10/31 and model is
Planning Study	WED	9/11/2014		open	under Ngrid review
Contact ISO-NE help desk	WED	9/11/2014		closed	ander righta review
Contact Verizon for POTS lines, DTT leased		-,,			
lines, ISO RTU line(if reg'd)	WED	9/11/2014		open	
Provide UL1741 listing documentation	WED	9/11/2014		closed.	
Provide active anti-islanding protection		, ,			
documents	WED	9/11/2014		closed.	
Revise one-lines to show; effectively		, ,			
grounded systems, grounding bank					
impedance, y-grd/y-grd .xfmrs, pole #'s of					
POI's.	WED	9/11/2014		closed.	
Provide voltage flicker data in format					
required.	WED	9/11/2014		closed.	
Provide voltage flicker data templates and		-, , -			
necessary format	NGrid	9/11/2014		closed.	
Provide ISO OP-14, 18 doc's and contact		, , -			
information	NGrid	9/11/2014		closed.	
Provide PSSE modeling template info	NGrid	9/11/2014		closed.	Does not exist
Request Trans. Planning Study case be		-, , -			
opened.	NGrid	9/11/2014		closed.	Does not exist
Schedule bi-weekly Impact Study progress					
review meetings	NGrid	10/15/2014	10/15/2014	closed.	
Provide Verizon communications request		, ,			
form	NGrid	10/15/2014		closed	
provide RFL spec's when available	NGrid	10/15/2014		open	
provide ISO-NE Help Desk ph. #	NGrid	10/15/2014	10/15/2014		413-540-4220
provide Trans. Plan'g Study Cost Estimate	NGrid	10/15/2014		open	
 					
					Received Cov 1 & 2
					on 10/29/14. WED
					to provide another
					revisions of plans
provide revised one-lines detailing: primary					per discussion on
conductor sizes with length and					10/31. Still require
impedance(turbines to POI's).	WED	10/15/2014		open	for other POI's.
provide POI sketch of equipment; piggly In. at					
perry hill.	NGrid	10/15/2014	10/15/2014	closed	
Provide comment on system improvement					
costs relative to system impact costs	NGrid	10/15/2014		open	
					WED provided
schedule meeting to review Net Metering					description of NM"g
Provision details.	NGrid	10/15/2014		open	intent.

Age of equipment to be replaced	NGrid	10/31/2014		open	
Age of equipment to be replaced DTT Design Proposal	WED	10/31/2014 10/31/2014		орен	
O Isaaa.	1 2 2 2				
	+				
	+				
			<u> </u>		

On Fri, Sep 12, 2014 at 2:42 PM, Kennedy, John C. < John. Kennedy@nationalgrid.com > wrote:

All,

Below are my notes from our meeting yesterday that we had reviewed. Please provide comment if you feel I missowED will:

- Provide UL listing documentation and 1741 compliance documentation as soon as able
- Provide verification that turbines have active anti-islanding protection

Revise one lines to show:

- o Effectively grounded systems
- o Impedance information of grounding banks
- Y-grd / Y-grd transformers(preferred by turbine mfg.)
- Stability Model of turbines
- o Flicker data of turbines per template and date provided by NGrid today.
- o Pole numbers of POI's complete
- o Pole numbers of POI's on one-lines
- Contact ISO help desk to initiate discussion
- Contact Verizon/Cable Co's to initiate POTS line, DTT leased line(if req'd), ISO RTU line(if req'd)

NGrid will:

Provide Flicker Data templates and necessary data – complete

Provide ISO Operation data - OP-14, 18 and contact information - complete

Provide PSSE modeling template - complete

Request Transmission Planning Study cases be opened-complete

Discussion other than above:

ISO Process / Requirements expected:

Two separate Transmission Planning Studies will be required

Lengthy process, concurrent to Impact Study once information is locked down, exceeds impact study timeline Many aspects of ISO process and timeline NGrid does not control

Customer need date: December 2015

Generally felt that Distribution and Transmission systems will handle proposed 15mW's – completed impact sture Overvoltage protection, 3V0, will be required at Coventry Station transformer and at both Hopkins Hill Station transformer and Albert Hill Stati

DTT communication options:

Verizon; most comfortable but timely Line of Sight

Fiber

Estimated Timelines:

D-line design – 3months

D-line construction; 6-9 mo's

Substation design and construction; 72-80 weeks

Estimated timelines discussed will be refined and provided in completed Impact Study

Station supply line outage coordination can add to construction timelines estimated.

d anything.	
y to confirm and detail System Modifications to do so. nsformers	
ng and active anti-islanding is provided. Completed Impact Study will provide determina	tion.

Discussion points and Meeting Notes:

- Discuss Mark's report that Vensys will complete active anti-islanding study in six months.
- o How does that affect UL Listing?
- o Will active anti-islanding by Vensys be a consideration for this 15mW's of DG?
- Temporary Overvoltage study will be required; dependent on conversation anti-islanding study may also be
 Above items were discussed; Mark clarified that UL 1741 listing is not available at this time and that active
 anti-islanding will not be provided or considered in the future for this project.

Based on that information, National Grid stated that only the Temporary Overvoltage study will be conducted/contracted out; timeline to be determined. DTT will be required for all POI's.

- Merits of moving turbine Cov. 2b(54F1) to Cov. 5 & 6 POI(63F6).
- Piggy Ln & Victory Hwy customer owned primary cable sizing.
- o Cable size and impedance needed to continue study(new one line reg'd.).

Above item was discussed; turbines are optimally located with regard to system impacts on 54F1 and 63F6 circuits. WED will provide revised one-lines detailing new primary conductor size and distances between

Trans Planning Study / PSSE Modeling Template – status, questions.

Above discussed; once NGrid obtains ISO-NE confirmation of study scope the study cost estimate will be provided to WED and invoiced.

- Voltage Flicker Data Submitted looks good. discussed.
- One Lines discussion
- DTT Requirements
- o Is there possibility of hardwiring generator breakers to limit DTT lines required? **WED indicated yes, this will** allow for two to three lines to be leased.
- WED to contact Verizon for service and inquire on monthly expense. NGrid to provide additional information to WED to help facilitate.
- o WED to explore other options if desirable, .ie, line of sight, fiber, etc.
- Estimated time remaining to complete study.
- Original 11/13/14 due date. ISRDG executed 8/15/14.
- o 4 weeks to receive flicker data(requested 9/11/14, received 10/9/14)
- o December 11, 14 is new due date at this point(temporary overvoltage study completion may affect this date, as will other data requests)

Above items were discussed.

Other items??

Discussion Points for Friday, 10/31:

- Review attached checklist; outstanding items.
- Review recently submitted one-line for Cov. 1 & 2.
- Review ISO NE process; what National Grid does, what WED does
- Questions

Attendees: Ngrid- J. Kennedy, J. Ryan, Caleb George, N. Reis, R. Kamal. WED- M. DePasquale

- ISO-NE process was reviewed by Jim Ryan. Jim will touch base with ISO-NE prior to WED making contact again; ir
- System Improvement/Upgrades: still pending
- Net Metering Discussion Meeting: pending, Mark has provided detail for review; once complete meeting tobe s
- Verizon: WED to contact on service requests and system upgrades
- Ngrid to provide substation addresses. Completed.
- WED requested age of equipment that is to be replaced.
- Discussion held re: DTT requirement and leased lines. Ngrid will schedule a separate meeting to discuss both iter

•

nitial call to ISO help desk has been made. Joint call with ISO-NE scheduled for 11/13/14.
cheduled.
ms.

From: Kennedy, John C. < John.Kennedy@nationalgrid.com>

Sent: Friday, November 07, 2014 3:04 PM

To: 'Mark(Wind) Depasquale'; 'David Colombo'

Subject: FW: RI WED

Mark, Dave, Is this something that you can provide? From Nick:

"In order to perform a Long term dynamic analysis I would like to have <u>expected power output data</u>, <u>versus time</u>, <u>on a variable windy day</u>, for these machines."

Thanks,

John Kennedy

nationalgrid

Lead Technical Support Consultant - RI Technical Sales and Engineering Support

Office: 401-784-7221

Please select the appropriate link below for the latest DG information:

National Grid's DG Website(RI) RIPUC No.2078 Standards for Connecting Distributed Generation RIPUC No.2075 Net Metering Provision ESB No.756 Requirements for Parallel Generation

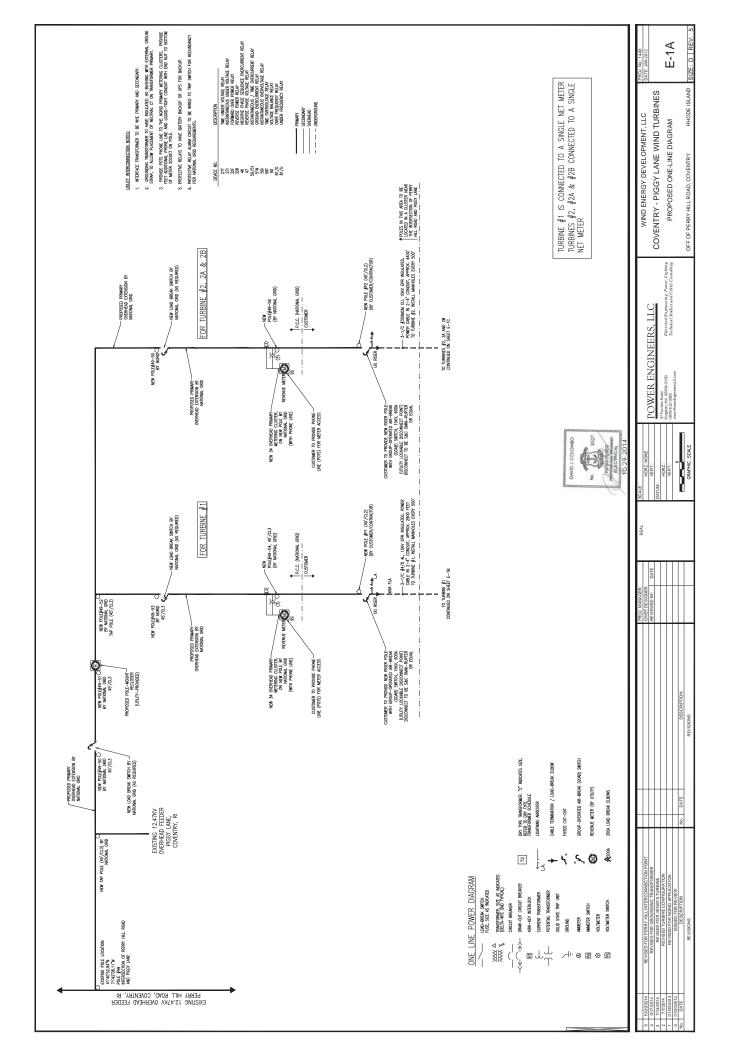
EXHIBIT K

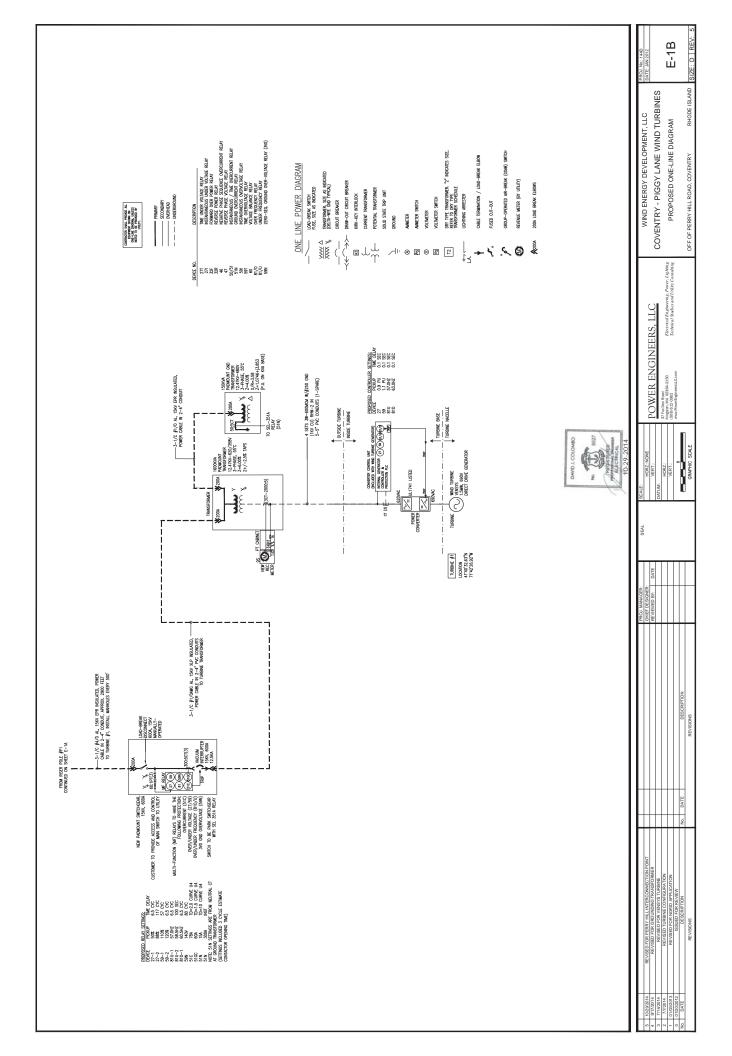
From: David Colombo < Dave@powerengineersllc.com>

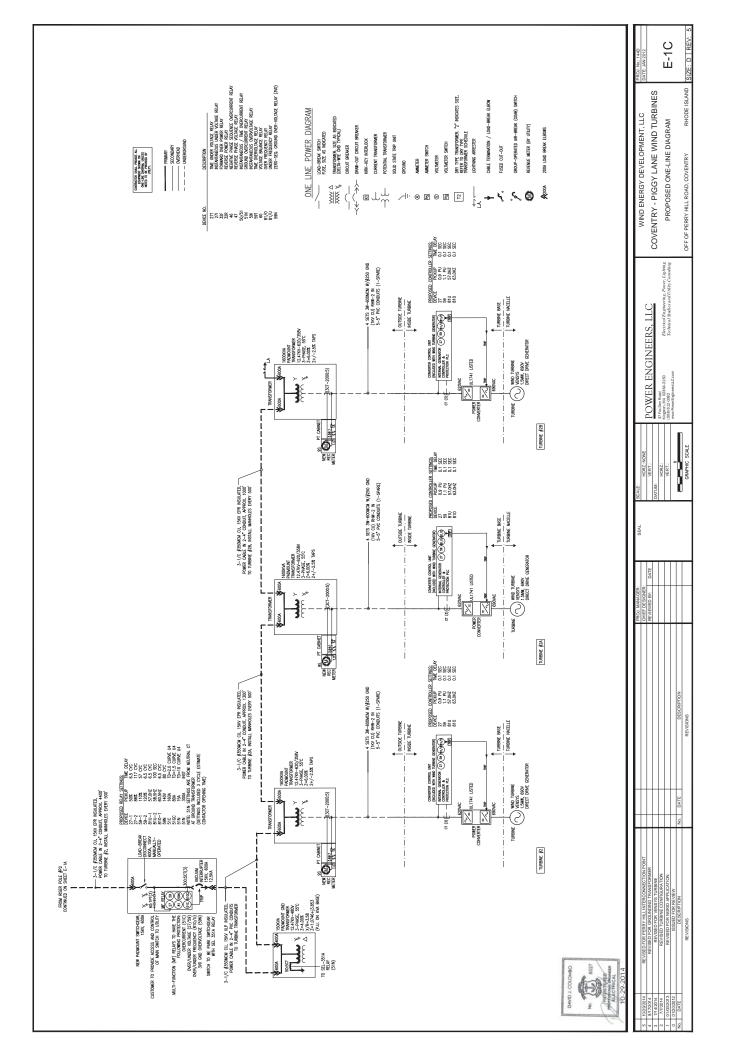
Sent: Wednesday, October 29, 2014 10:56 AM

To: Mark(Wind) Depasquale; Kennedy, John C.; George, Caleb; Theo Peters

Subject: WED - Coventry 1, 2, 2A, 2B One-Lines


Attachments: Coventry Wind 1 2 2A 2B One-Line Rev 10-29-2014.pdf


John


Per our last meeting on 10/15, attached are the revised one-lines for Coventry 1, 2, 2A and 2B wind turbines. The changes reflect the new pole area at Perry Hill Road and the customer installing the underground feeders to the intersection of Piggy Lane and Perry Hill for interconnection. Please let me know if you have any questions.

Sincerely, Dave

David J. Colombo, P.E. Power Engineers, LLC (508) 612-0382 Dave@PowerEngineersLLC.com

From: Mark(Wind) Depasquale <md@wedenergy.com>

Sent: Friday, November 14, 2014 2:37 PM

To: Kennedy, John C.

 Subject:
 Wind Data 2013 11 12-2014 11 12.xlsx

 Attachments:
 Wind Data 2013 11 12-2014 11 12.xlsx

John, attached is the wind data we spoke of.

Thanks, Mark

George, Caleb

From: Mark(Wind) Depasquale <md@wedenergy.com> Sent: Wednesday, November 26, 2014 9:14 AM

To: Kennedy, John C.

Cc: 'P. E. David J. Colombo (Dave@PowerEngineersLLC.com)'; Mark(Wind) Depasquale

Subject: Distance between turbines

John, regarding your request on November 14, to supply the distance between the turbines, they are on the site drawings submitted to National Grid at the beginning of the process. National Grid engineers stated they wanted the measurements so they would not have to scale the drawings, but this information is clearly obtainable from the drawing that were submitted.

1. WED Coventry One will interconnect at Piggy Lane at the end of the existing service on site 332 feet.

- 2. WED Coventry Two will interconnect at the intersection of Perry Hill Road and Piggy Lane, 4,110 feet to WED Coventry Two. 1,120 feet from WED Coventry Two to Two A, and 997 feet from Two A to Two B.
- 3. WED Coventry Three, from road to turbine, 1,163 feet.
- 4. WED Coventry Four, from road to turbine, 2,673 feet.
- 5. WED Coventry Five, from road to turbine, 1,475 feet.
- 6. WED Coventry Six, from road to Six B, 3,614 feet, from 6B to 6A, 3,016 feet and from 6A to 6 is 2,921 feet.

I hope this clarifies your engineer's questions. At this time, there are no outstanding items from WED and per our discussion on November 14th, we are anticipating the interconnection study on the second week in December. Per your request, I have held off on releasing the transformers on this project, but as of last week, we solidified our turbines and expect them in the port in August 2015. We will be ready for witness test by the end of September.

Per the tariff, prior to National Grid's revisions at the PUC to change the tariff on Monday November 23rd, it is clear that National Grid needs to interconnect this project in 150 days. Just to remind you, National Grid has been aware and studying this project for 630 days, and with the resubmission of the applications, it has been 102 days.

Have a Happy Thanksgiving.

Mark

Mark DePasquale

3760 Quaker Lane

North Kingstown, RI 02852 Office: 401-295-4998 Ext. 103

Fax: 401-295-4944 md@wedenergy.com

Please consider the environment before printing this email.

1

George, Caleb

Kennedy, John C. From:

Wednesday, November 26, 2014 5:23 PM Sent: To: George, Caleb; nreis@controlpointtech.com

Subject: FW: 3-26 to 3-28 Real Time Data

Attachments: Wind Speed and Active Power 3-26 to 3-28 2014.xlsx

FYI, talk next week

John Kennedy

From: Mark(Wind) Depasquale **Sent:** 11/26/2014 5:13 PM To: Kennedy, John C. Cc: Mark(Wind) Depasquale

Subject: FW: 3-26 to 3-28 Real Time Data

John, I gave you the data from 03/25/14 through 03/28/14 in 10 sec intervals per your request.

Thanks, Mark

Mark DePasquale

3760 Quaker Lane

North Kingstown, RI 02852 Office: 401-295-4998 Ext. 103

Fax: 401-295-4944 md@wedenergy.com

Please consider the environment before printing this email.

EXHIBIT L

From: Kennedy, John C. < John.Kennedy@nationalgrid.com>

Sent: Friday, January 30, 2015 4:01 PM

To: 'Mark(Wind) Depasquale'

Cc: Kelly, Kevin G.; LaBrake-Jr, Neil F.; George, Caleb; 'David Colombo' **Subject:** WED Coventry 1-6; 23kV Interconnection and Impact Study

Mark.

It was great to speak with you this morning. To recap our meeting please see below and let me know if any edits or additions are needed.

- Caleb and his team have completed enough analysis of the 23kV sub-transmission circuit to determine that 3V0 and DTT will not be required.
- We agreed that National Grid will provide an Impact Study of the 23kV sub-transmission interconnection. Impact Study fees will not be charged at this point and will be included in the payment plan of the Interconnection Service Agreement(ISA). We will include the tariff fee of \$10,000 per application/POI totaling \$60,000 in study fees at time of ISA. Note: I failed to mention it during our call; as a point of information, National Grid has incurred approximately \$100,000 in consulting fees alone for Coventry 1-6.
 - o The study will provide an estimate of system modification which will include an overhead line extension of the 2232 circuit along Flat River Rd to Coventry 3 and Coventry 4; along Log Bridge and West Log Bridge Roads to the cul de sac on West Log Bridge Road. The estimate will also include an underground line extension from the cul de sac on West Log Bridge Road to Coventry 1, 2, 5, and 6. WED will design, provide necessary permits, procure and construct the manhole and duct system per National Grid's construction and material standards. MH/Duct system will be conveyed to National Grid prior to National Grid installing cable. The mh/duct installation will be subject to a donated property tax. Further details of this arrangement to be provided at a later date.
 - o The study will also provide an estimate of system modification which will include an underground line extension of the 2232 circuit along Flat River Rd to Coventry 3 and Coventry 4; along Log Bridge and West Log Bridge Roads to Coventry 1, 2, 5, and 6. WED will design, provide necessary permits, procure and construct the manhole and duct system per National Grid's construction and material standards. MH/Duct system will be conveyed to National Grid prior to National Grid installing cable. The mh/duct installation will be subject to a donated property tax. Further details of this arrangement to be provided at a later date.
- We received the revised one-lines yesterday. We also received the rendering of POI's for Coventry 1, 2,5 & 6 on Wednesday of this week. A more definitive site plan will be required prior to completion of the study showing property lines and limits of public way.
- We reviewed that the overhead extension estimate of the study will be completed first as the underground extension will need to be modeled. National Grid will endeavor to provide the 23kV interconnection Impact Study and estimates of both options as soon as possible.

Please let me know if you have any questions.

Enjoy the weekend – Go Pats!,

John Kennedy

national**grid**

Lead Technical Support Consultant - RI Technical Sales and Engineering Support Office: 401-784-7221

Please select the appropriate link below for the latest DG information: National Grid's DG Website(RI) RIPUC No.2078 Standards for Connecting Distributed Generation RIPUC No.2075 Net Metering Provision ESB No.756 Requirements for Parallel Generation

EXHIBIT M

Exhibit E – Impact Study or ISRDG Agreement

This Agreement, dated February 18, 2015, is entered into by and between WED Coventry One, LLC, WED Coventry Two, LLC, WED Coventry Three, LLC, WED Coventry Four, LLC, WED Coventry Five, LLC, WED Coventry Six, LLC ("Interconnecting Customer's") and the Company, for the purpose of setting forth the terms, conditions and costs for conducting an Impact Study relative to the Standard Process as defined in Section 1.0 and outlined in Section 3.0 of the Interconnection Tariff. This Impact Study pertains to Application Numbers 14319785, 14462941, 15640455, 15772951, 17599370, and 17600293 (the Interconnecting Customer's application ID numbers).

- The Interconnecting Customer agrees to provide, in a timely and complete manner, all additional
 information and technical data necessary for the Company to conduct the Impact Study not already
 provided in the Interconnecting Customer's application.
- All work pertaining to the Impact Study that is the subject of this Agreement will be approved and
 coordinated only through designated and authorized representatives of the Company and the
 Interconnecting Customer. Each party shall inform the other in writing of its designated and
 authorized representative, if different than what is in the application.
- 3. Where there are other potentially Affected Systems, and no single Party is in a position to prepare an Impact Study covering all potentially Affected Systems, the Company will coordinate but not be responsible for the timing of any additional studies required to determine the impact of the interconnection request on other potentially Affected Systems. The Interconnecting Customer will be directly responsible to the potentially Affected System operators for all costs of any additional studies required to evaluate the impact of the interconnection on the potentially Affected Systems. The Company will not proceed with this Impact Study without the Interconnecting Customer's consent to have the other studies conducted.
- 4. If the Company determines, in accordance with Good Utility Practice, that the System Modifications to the Company EPS are not substantial, the Impact Study will determine the scope and cost of the modifications. If the Company determines, in accordance with Good Utility Practice, that the System Modifications to the Company EPS are substantial, the Impact Study will produce an estimate for the modification costs (within ±25%) and a Detailed Study Agreement and its estimated cost.
- 5. Impact Study, together with any additional studies contemplated in Paragraph 3, shall form the basis for the Interconnecting Customer's proposed use of the Company EPS and shall be furthermore utilized in obtaining necessary third-party approvals of any required facilities and requested distribution services. The Interconnecting Customer understands and acknowledges that any use of study results by the Interconnecting Customer or its agents, whether in preliminary or final form, prior to NEPOOL 18.4 approval, should such approval be required, is completely at the Interconnecting Customer's risk.
- 6. The Impact Study fee of \$60,000.00* (except as noted below) is due in full prior to the execution of the Impact Study**. For a Renewable Interconnecting Customer the ISRDG Study fee is as per Table 2 in Section 3.5 of the interconnection tariff.
- Final Accounting. Upon request by the Interconnecting Customer, the Company within ninety (90)
 business days after completion of the construction and installation of the System Modifications
 described in an attached exhibit to the Interconnection Service Agreement, shall provide

Interconnecting Customer with a final accounting report of any difference between (a) Interconnecting Customer's cost responsibility under the Interconnection Service Agreement for the actual cost of such System Modifications, and (b) Interconnecting Customer's previous aggregate payments to the Company for such System Modifications. To the extent that Interconnecting Customer's cost responsibility in the Interconnection Service Agreement exceeds Interconnecting Customer's previous aggregate payments, the Company shall invoice Interconnecting Customer and Interconnecting Customer shall make payment to the Company within forty-five (45) days. To the extent that Interconnecting Customer's previous aggregate payments exceed Interconnecting Customer's cost responsibility under this agreement, the Company shall refund to Interconnecting Customer an amount equal to the difference within forty-five (45) days of the provision of such final accounting report.

- 8. In the event this Agreement is terminated for any reason, the Company shall refund to the Interconnecting Customer the portion of the above fee or any subsequent payment to the Company by the Interconnecting Customer that the Company did not expend or commit in performing its obligations under this Agreement. Payments for work performed shall not be subject to refunding except in accordance with Paragraph 11 below.
- Nothing in this Agreement shall be interpreted to give the Interconnecting Customer immediate rights to wheel over or interconnect with the Company's EPS.
- 10. Except as precluded by the laws of the State of Rhode Island and the Providence Plantations, Interconnecting Customer and Company shall each indemnify, defend and hold the other, its directors, officers, employees and agents (including, but not limited to, affiliates and contractors and their employees), harmless from and against all liabilities, damages, losses, penalties, claims, demands, suits and proceedings of any nature whatsoever for personal injury (including death) or property damages to unaffiliated third parties that arise out of, or are in any manner connected with, the performance of this Agreement by that party, except to the extent that such injury or damages to unaffiliated third parties may be attributable to the negligence or willful misconduct of the party seeking indemnification.

Notwithstanding the foregoing, the Interconnecting Customer hereby waives recourse against the Company and its Affiliates for, and releases the Company and its Affiliates from, any and all liabilities arising from or attributable to incomplete, inaccurate, or otherwise faulty information supplied by the Interconnecting Customer. Moreover, with respect to an ISRDG provided to a Renewable Interconnecting Customer, the Company may not be held liable or responsible if the actual costs exceed the estimate as long as the estimate was provided in good faith and the interconnection was implemented prudently the Company.

- 11. If either party materially breaches any of its covenants hereunder, the other party may terminate this Agreement by serving notice of same on the other party to this Agreement.
- 12. This agreement shall be construed and governed in accordance with the laws of the State of Rhode Island and the Providence Plantations.
- 13. All amendments to this Agreement shall be in written form executed by both Parties.
- The terms and conditions of this Agreement shall be binding on the successors and assigns of either Party.
- 15. This Agreement will remain in effect for a period of up to two years from its effective date.

- 16. This Agreement may be terminated under the following conditions.
 - a) The Parties agree in writing to terminate the Agreement.
 - b) The Interconnecting Customer may terminate this agreement at any time by providing written notice to Company.
 - c) The Company may terminate this Agreement if the Interconnecting Customer either: (1) has not paid the fee or, (2) has not responded to requests for further information in accordance with provisions in the Interconnection Tariff.

* The \$60,000 ISRDG fee is a combined total for all six interconnection applications.

** The Company and the Interconnecting Customer have agreed to include study fee in the payment terms or plan within the Interconnection Service Agreement. If the projects do not progress to an Interconnection Service Agreement, the Interconnecting Customer will pay the study fee by a mutually agreed upon date.

Interconnecting Customers:	Narragans	ett Electric Company d/b/a National Grid:
Name: Mark Delagarle	Name:	John Kennedy
Title: Menber, WED Coursely Onelle	Title:	Lead Technical Consultant
Date: 2/18/15	Date:	February 18, 2015
Signature:	Signature:	I'm C touncoly
Name: Mark De Pasque	•	
Title: Member, was coverley Two	cic	
Date: 2/18/15		
Signature///	_	
Name: Mank De Pssquale		
Title: Member WED Coventary Tha	ec, LLC	
Date: 2/18/15		
Signature Mulle		

Name:	Mark De Pasquele
Title:	Member, WED Coventay Four, we
Date:	2/18/15
Signature	fulle
Name:	Mark De Pasquele
Title:	Member WEO Coventay Pive, Luc
Date:	2/18/15
Signatur	Much
Name:	Mark Delsquele
Title:	Member, WED Covenhay Sir, LIC
Date:	2/18/15
Signature	Meulo

EXHIBIT O

Ramos, Adam M.

From: Mark DePasquale <md@wedenergy.com> Sent: Friday, February 20, 2015 6:06 PM

To: Kennedy, John C.; Mark DePasquale

Cc: Ben Kaplan; Kelly, Kevin G.; P. E. David J. Colombo (Dave@PowerEngineersLLC.com)

Subject: RE: WED Coventry 1-6 Combined Impact Study -23kV Interconnection

John, regarding Tuesday's meeting, I would like to postpone until the first week of March. David Colombo is out of town this week, which will give him time to review the interconnection study. I also would like to send you questions regarding your study. We have engaged a civil engineer to work on a utility easement and permits to run this system underground. One of my biggest concerns about the above ground system is that it is 17 to 20 months out, which you are fully aware that it will push us out of the DG Contracts for Three and Four and National Grid will unjustly keep my deposits. We have consulted with the state and our engineers and feel confident that we can have all permits and easements completed by the end of May, which allows me 90 days to complete the installation of the underground system. The town has already given us approval to do the underground system on their roads within their jurisdiction with easements, this is already in the agreement between WED and the town of Coventry. We currently have two quotes for the underground system. It is a preliminary number +/- 25% after final design, but we are at \$3,794,784 for the entire scope (not including taxes and NGrid's fee). This includes permitting, E&B, concrete duct banks, splice boxes, wire, pulling of wire, pad mounted metering switches at each site from the Coventry substation to WED Coventry Five. We have estimated additional footage that is not on your interconnection. Once I receive your price for the wire, pad mounted gear and your installation, that you acknowledge I would have next week, and receive answers that David will forward to you and questions I ask below, we can have an intelligent conversation at the meeting and compare costs.

A couple of guestions that I would like you to respond to

- 1. I am being charged \$819,000 for taxes on the entire system. We assume you are being taxed on the existing system. I would assume that I should only pay taxes on the wiring for the 23kv circuit, because everything on the proposal is in operation and taxes is being paid on. If this assumption is wrong, can you please explain the tax liability and possibly the system is already depreciated due to its age.
- 2. I would like you to give me the specification on the lifespan of the telephone poles from the manufacturer.
- 3. It appears that I am building the entire system, I think it will be unjust to donate a new system and have to pay half a million to remove the antiquated system, Please review.
- 4. Please give me a breakdown of the O&M of \$509,000 and what it includes.
- 5. I would like to know how we can expedite the above ground system to be ready in October for the turbines to run.

This is only my questions, these don't include questions from the engineers.

Please let me know of a new date we can meet and any updates on your underground quote.

Thank you, Mark

From: Kennedy, John C. [mailto:John.Kennedy@nationalgrid.com]

Sent: Wednesday, February 18, 2015 11:35 PM

To: Mark(Wind) Depasquale Cc: Ben Kaplan; Kelly, Kevin G.

Subject: WED Coventry 1-6 Combined Impact Study -23kV Interconnection

Mark,

Here is the 23kV Interconnection Impact Study with the OH option estimate as discussed. Please review in detail and let me know if you have any questions. You may request that the Interconnection Service Agreements be drafted at this point which will include the System Modification costs estimate for the OH option or you may opt to wait for the UG estimate to be completed and make your decision at that time.

Again, I am involved in a workshop tomorrow and away from the office Friday. I will be checking emails during that time and will try to get back to you with any questions that you have. As an option for review of this study, please let me know if you would like to meet or conference early next week.

Best,

John Kennedy

nationalgrid

Lead Technical Support Consultant - RI Technical Sales and Engineering Support

Office: 401-784-7221

Please select the appropriate link below for the latest DG information:

National Grid's DG Website(RI)

RIPUC No.2078 Standards for Connecting Distributed Generation

RIPUC No.2075 Net Metering Provision

ESB No.756 Requirements for Parallel Generation

From: Kennedy, John C.

Sent: Wednesday, February 18, 2015 5:34 PM

To: 'Mark(Wind) Depasquale'

Cc: 'Ben Kaplan'

Subject: RE: WED Coventry 1-6 Combined Study Agreement -23kV Interconnection & PCC Confirmation Reply

Mark,

Here is your copy of the executed Combined Study Agreement. I will send over study as soon as I get the final version. I am told that it will be available tomorrow. Please remember that the study will have the overhead estimate and the underground estimate and any underground related requirements will be provided at a later date.

Best,

John Kennedy

national**grid**

Lead Technical Support Consultant - RI Technical Sales and Engineering Support

Office: 401-784-7221

Please select the appropriate link below for the latest DG information:

National Grid's DG Website(RI)

RIPUC No.2078 Standards for Connecting Distributed Generation

RIPUC No.2075 Net Metering Provision

ESB No.756 Requirements for Parallel Generation

From: Mark(Wind) Depasquale [mailto:md@wedenergy.com]

Sent: Wednesday, February 18, 2015 11:13 AM

To: Kennedy, John C.

Cc: Mark(Wind) Depasquale; Ben Kaplan

Subject: RE: WED Coventry 1-6 Combined Study Agreement -23kV Interconnection & PCC Confirmation Reply

John:

Thank you for revising the Impact Study Agreement. I've attached the signed agreement. Please confirm that:

- 1) There will be no "detailed studies" as mentioned in paragraph 4 of the agreement, the impact study you have done (if agreed by the projects) will lead directly to an Interconnection Service Agreement.
- 2) You will conduct an account of final interconnection costs and true them up to the estimated number. That agreement in Docket 4483 is not shown in paragraph 7 of this Impact Study agreement. If you still think it necessary to request an accounting, we request an accounting so please confirm our request.
- 3) I'm willing to rely on your 1/30 email about the agreed scope of the study but it may be clearer to include that as an exhibit to the agreement.

We look forward to an improved study with a revised cost and a committed timeline to the interconnection of these 10 turbines.

Thank you.

Mark

Mark DePasquale

3760 Quaker Lane North Kingstown, RI 02852 Office: 401-295-4998 Ext. 103

Fax: 401-295-4944 md@wedenergy.com

Please consider the environment before printing this email.

This e-mail, and any attachments are strictly confidential and intended for the addressee(s) only. The content may also contain legal, professional or other privileged information. If you are not the intended recipient, please notify the sender immediately and then delete the e-mail and any attachments. You should not disclose, copy or take any action in reliance on this transmission.

You may report the matter by contacting us via our <u>UK Contacts Page</u> or our <u>US Contacts Page</u> (accessed by clicking on the appropriate link)

Please ensure you have adequate virus protection before you open or detach any documents from this transmission. National Grid plc and its affiliates do not accept any liability for viruses. An e-mail reply to this address may be subject to monitoring for operational reasons or lawful business practices.

For the registered information on the UK operating companies within the National Grid group please use the attached link: http://www.nationalgrid.com/corporate/legal/registeredoffices.htm

EXHIBIT P

SOLAR POWER stats

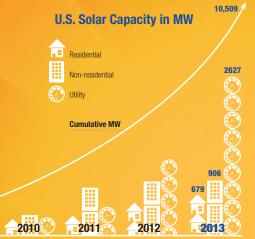
2010

2011

MW = megawatt-ac

2013 UTILITY SOLAR LEADERS SEPAtop10.org

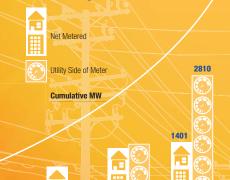
2013 solar surpassed FOUR GIGAWATTS (GW), bringing U.S. solar capacity to over 10.5 GW.


Program News from 2013 Utility Survey

of responding utilities are currently

offering customer solar incentives.

are currently offering programs for



	ANNUAL MW	ANNUAL W/CUSTOMER
1	Pacific Gas and Electric Company (CA) 1471 MW	Sterling Municipal Light Dept (MA) 831 W
2	San Diego Gas & Electric Company (CA) 643 MW	San Diego Gas & Electric Company (CA) 461 W
3	Arizona Public Service (AZ) 417 MW	Silicon Valley Power/City of Santa Clara (CA) 427 W
4	Southern California Edison (CA) 373 MW	Arizona Public Service (AZ) 368 W
5	Duke Energy Progress (NC, SC) 137 MW	Hawaiian Electric Company, Inc. (HI) 329 W
6	National Grid (MA, RI) 111 MW	Pacific Gas and Electric Company (CA) 281 W
7	Public Service Electric & Gas Company (NJ) 103 MW	Hawaii Electric Light Company (HI) 182 W
8	Hawaiian Electric Company, Inc. (HI) 98 MW	Maui Electric Company Ltd (HI) 178 W
9	Georgia Power Company (GA) 59 MW	Kaua'i Island Utility Cooperative (HI) 167 W
10	Duke Energy Carolinas (NC, SC) 58 MW	Imperial Irrigation District (CA) 159 W

ANNUAL INTERCONNECTIONS	ANNUAL INTERCONNECTION PER 1,000 CUSTOMERS	
Pacific Gas and Electric Company (CA) 28,807 projects	Hawaiian Electric Company, Inc. (HI) 47 projects	1
Southern California Edison (CA) 26,372 projects	Kaua'i Island Utility Cooperative (HI) 26 projects	2
Hawaiian Electric Company, Inc. (HI) 14,071 projects	Hawaii Electric Light Company (HI) 24 projects	3
San Diego Gas & Electric Company (CA) 10,945 projects	Maui Electric Company Ltd (HI) 23 projects	4
Arizona Public Service (AZ) 7,286 projects	Pennsylvania Electric Company (PA) 13 projects	5
Xcel Energy-Public Service Co. of Colorado (CO) 5,426 projects	San Diego Gas & Electric Company (CA) 8 projects	6
Los Angeles Dept. of Water and Power (CA) 4,156 projects	Sulphur Springs Valley Electric Co-op (AZ) 7 projects	7
Salt River Project (AZ) 2,676 projects	Arizona Public Service (AZ) 6 projects	8
Public Service Electric & Gas Company (NJ) 2,374 projects	Pacific Gas and Electric Company (CA) 5 projects	9
National Grid (MA, RI) 2,259 projects	Southern California Edison (CA) 5 projects	1

Top 10 Solar States (total MW)

2012

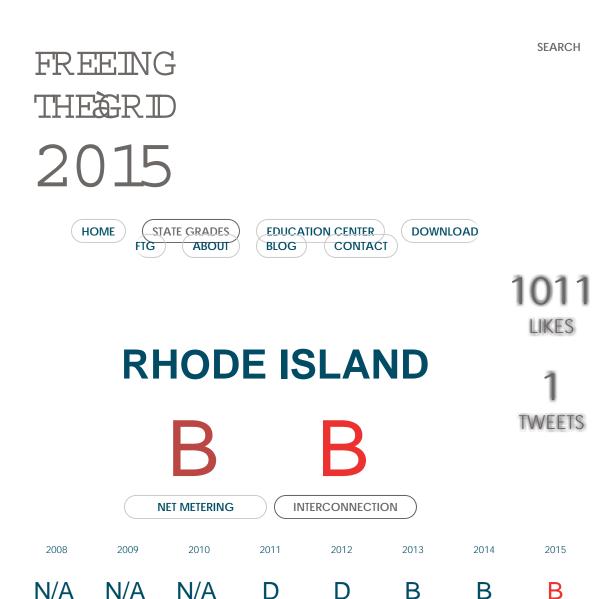

Net Metering Over Time in MW

Exhibit Q

RECOMMENDATIONS

• The state should adopt IRECs model interconnection procedures

ELIGIBLE RENEWABLE/OTHER TECHNOLOGIES

N/A

2007

D

APPLICABLE SECTORS

N/A

APPLICABLE UTILITIES

Exhibit Q

N/A

SYSTEM CAPACITY LIMIT

N/A

BONUS

Applications and agreements accepted electronically; Insurance Waived for Generators up to 25 kW; Dispute resolution process adopted to address disputes

NOTES

1011

Rhode Island has not made any significant changes to its net metering policy since 2011. As revised in 2011, the law provides for a system that resembles net metering, but which could be argued is not net metering as practiced in other states. As currently constructed, the law provides that a net metering customer receives _net metering creditsî that offset up to 100% of the customers usage during a month, and is _paidî for generation of up to 25% in excess of consumption at the utilitys standard service offer (SSO) rate. Thus the customer may offset on-site consumption with self-generation at the retail rate during a billing period (i.e., net metering) and carry over excess of up to 25% at the SSO rate, but the transaction itself could be seen as blurring the line between net metering and a buy-all, sell-all rate. In 2014, Rhode ETS Island enacted legislation modestly increasing its score by removing the former 3% of statewide peak load aggregate net metering cap for National Grid (the utility provider for 98.5% of the states electric customers), and clarifying that net metering customers own the renewable energy credits produced by their systems (formerly unspecified).

SAVE PAGE AS PDF

FREEING
THEERID
2015

© Copyright

Exhibit Q

1011 LIKES

1 TWEETS

