

Raquel J. Webster Senior Counsel

March 19, 2014

VIA HAND DELIVERY & ELECTRONIC MAIL

Luly E. Massaro, Commission Clerk Rhode Island Public Utilities Commission 89 Jefferson Boulevard Warwick, RI 02889

RE: Docket 4474 - National Grid's Proposed FY 2015 Gas Infrastructure, Safety, and Reliability Plan <u>Responses to PUC Data Requests – Set 3</u>

Dear Ms. Massaro:

On behalf of National Grid,¹ I have enclosed National Grid's responses to the PUC's third set of data requests in the above-referenced matter.

Thank you for your attention to this transmittal. If you have any questions, please contact me at (781) 907-2121.

Very truly yours,

Raquel J. Webster

Enclosures

cc: Docket 4474 Service List Steve Scialabba Leo Wold, Esq. James Lanni Don Ledversis

¹ The Narragansett Electric Company d/b/a National Grid ("National Grid" or the "Company").

<u>PUC 3-1</u>

Request:

Please provide an inventory of gas mains in densely populated areas in Rhode Island, identifying the geographic area, type of main, the age (0-50 years, 50-75 years, 75 to 100 years and 100+ years) by material type and length.

Response:

National Grid reports "Miles of Main and Number of Services by Decade of Installation" annually, as required in U.S. Department of Transportation Pipeline and Hazardous Material Safety Administration's ("PHMSA"), Annual Report for the Gas Distribution System at Part B, section 4 ("Annual Report"). Please see Attachment PUC 3-1, which is a copy of the Annual Report.

In addition, please see the chart below for the material type and miles of mains by municipality.

Town	Bare Steel	Wrapped Steel	Plastic	Cast Iron	Ductile and Other
Barrington	7	16	62	11	1
Bristol	4	12	31	-	-
Burrillville	-	0	3	-	-
Central Falls	4	5	2	20	0
Coventry	1	33	49	-	-
Cranston	25	51	99	121	-
Cumberland	15	46	52	12	1
East Greenwich	2	23	33	-	-
East Providence	14	36	51	73	-
Exeter	0	5	5	-	-
Hopkinton	0	1	1	-	-
Johnston	14	33	39	20	-
Lincoln	4	64	19	17	5
Middletown	2	21	31	8	-
Narragansett	-	24	44	-	-
Newport	5	14	64	18	-
North Kingstown	5	58	82	0	-
North Providence	17	26	25	36	2
North Smithfield	5	9	13	3	0
Pawtucket	20	13	27	139	5
Portsmouth	0	24	26	-	-
Providence	13	48	88	278	0
Scituate	-	0	4	-	-
Seekonk	-	0	-	-	-
Smithfield	4	27	30	5	-
South Kingstown	0	31	33	-	-
Tiverton	3	0	16	-	-
Warren	2	10	17	3	0
Warwick	117	83	167	15	-
West Greenwich	-	2	2	-	-
West Warwick	3	34	30	-	-
Westerly	21	13	53	3	-
Woonsocket	13	22	28	48	1
Grand Total	320	784	1,227	831	16

<u>PUC 3-1, page 2</u> Rhode Island Mains by Material in Units of Miles

Attachment PUC 3-1 R.I.P.U.C. Docket No. 4474 Page 1 of 3

					Page 1 of 3	ocket No. 44	
NOTICE: This report is required by 49 CFR Part 191. Failure to report ca for each violation for each day that such violation persists except that the \$1,000,000 as provided in 49 USC 60122.			0	MB NO: 2137-0 XPIRATION DA			
A		Initial Da Submitte	0	3/14/2014			
U.S Department of Transportation Pipeline and Hazardous Materials Safety Administration	1	Form Ty	vpe: IN	INITIAL			
·		Date Subm	nitted:				
CA GAS A federal agency may not conduct or sponsor, and a person is not require information subject to the requirements of the Paperwork Reduction Act of Number for this information collection is 2137-0522. Public reporting for the	nless that collection of in his collection of informati	2013 SYSTEM Il a person be sub formation displaysion is estimated to	s a current v be approxir	alid OMB Contro nately 16 hours	ol Number. The per response, in	OMB Control cluding the	
time for reviewing instructions, gathering the data needed, and completin mandatory. Send comments regarding this burden estimate or any other Collection Clearance Officer, PHMSA, Office of Pipeline Safety (PHP-30)	aspect of this collection of	of information, inc	luding sugge	estions for reduc			
PART A - OPERATOR INFORMATION		(DOT use on	nly) 20	0142641-2168	1		
1. Name of Operator		NIAGARA MOHAWK POWER CORP					
2. LOCATION OF OFFICE (WHERE ADDITIONAL INFORMATION MAY BE OBTAINED)							
2a. Street Address		175 East Old Country Road					
2b. City and County		Hicksville,Nassau					
2c. State		NY					
2d. Zip Code		11801					
3. OPERATOR'S 5 DIGIT IDENTIFICATION NUMBER		13480					
4. HEADQUARTERS NAME & ADDRESS							
4a. Street Address		40 SYLVAN RD.					
4b. City and County		WALTHAM					
4c. State		MA					
4d. Zip Code	1	02451					
5. STATE IN WHICH SYSTEM OPERATES		RI					
PART B - SYSTEM DESCRIPTION							
1.GENERAL							
STEEL UNPROTECTED CATHODICALLY PROTECTED							

	BARE	COATED	BARE	COATED	DUCTILE IRON	COPPER	CAST/ WROUGHT IRON	PLASTIC	OTHER	TOTAL
MILES OF MAIN	319.844	188.002	0.000	596.248	16.242	0.000	831.070	1227.158	0.007	3178.571
N0. OF SERVICES	41821.000	9566.000	0.000	10150.000	16.000	207.000	185.000	130002.000	984.000	192931.00 0

2.MILES OF MAIN	Page 2 of 3 Page 2 of 3 MILES OF MAINS IN SYSTEM AT END OF YEAR												
MATERIAL	UNKNOW	N	2' OR LESS		OVER	2' THRU 4'	OVER 4' TH	RU 8'	OVER 8' TI	IRU 12'	OVER	12'	TOTAL
STEEL	0.002		393.387		239.8	01	317.869		109.404		43.631		1104.094
DUCTILE IRON	0.000		0.049		6.838		8.586		0.769		0.000		16.242
COPPER	0.000		0.000		0.000		0.000		0.000		0.000		0.000
CAST/WROUGHT IRON	0.000		3.119		341.92	22	374.630		74.345		37.054		831.070
PLASTIC PVC	0.000		0.000		0.000		0.000		0.000		0.000		0.000
PLASTIC PE	0.000		629.589		250.33	31	339.029		8.208		0.001		1227.158
PLASTIC ABS	0.000		0.000		0.000		0.000		0.000		0.000		0.000
PLASTIC OTHER	0.000		0.000		0.000		0.000		0.000		0.000		0.000
OTHER	0.006		0.000		0.000		0.001		0.000		0.000		0.007
TOTAL	0.008		1026.144	1026.144 838.892		92	1040.115 192.726		80.686	80.686			
NUMBER OF SE	RVICES IN	SYSTEM AT	END OF YEAF	ł			•	AVER	AGE SERVI	CE LENG	TH: 66.09)	•
MATERIAL	UNKNOW	N	1' OR LESS		OVER	1' THRU 2'	OVER 2' TH	IRU 4'	OVER 4' TI	IRU 8'	OVER	8'	TOTAL
STEEL	570.000		19709.000		39014	.000	1853.000		333.000		58.000		61537.000
DUCTILE IRON	0.000		0.000		1.000		4.000		11.000		0.000		16.000
COPPER	1.000		204.000		2.000		0.000		0.000		0.000		207.000
CAST/WROUGHT IRON	0.000		1.000		24.00	0	90.000		70.000		0.000		185.000
PLASTIC PVC	0.000		0.000		0.000		0.000		0.000		0.000		0.000
PLASTIC PE	620.000		68777.000		56728	.000	3234.000		590.000		53.000		130002.00 0
PLASTIC ABS	0.000		0.000		0.000		0.000		0.000		0.000		0.000
PLASTIC OTHER	0.000		0.000		0.000		0.000		0.000		0.000		0.000
OTHER	805.000		39.000		135.0	00	5.000		0.000		0.000		984.000
TOTAL	1996.000		88730.000		95904	.000	5186.000		1004.000		111.00	0	192931.00 0
MILES OF MAIN	AND NUME	BER OF SER	VICES BY DEC	ADE C	F INST	ALLATION							
	UNKNOWN	PRE-1940	1940-1949	1950-	1959	1960-1969	1970-1979	1980-1989	1990-1	999 20	00-2009	2010-2019	TOTAL
MILES OF MAIN	392.248	553.501	89.962	193.5	61	472.886	221.722	366.638	381.932	2 29	4.683	211.438	3178.571
NUMBER OF SERVICES	7911.000	16137.000	4985.000	7317.0	000	15346.000	17609.000	34226.000	39121.0	000 32	397.000	17882.000	192931.00 0

	r	MAINS		SERVICES		
CAUSE OF LEAK TOTAL			HAZARDOUS	TOTAL	HAZARDOUS	
CORROSION	228		130	360	246	
NATURAL FORCES	54		54	5	5	
EXCAVATION DAMAGE	35		34	80	80	
OTHER OUTSIDE FORCE DAMAGE	1		1	2	2	
MATERIAL OR WELDS	3		3	15	12	
EQUIPMENT	49		25	79	47	
INCORRECT OPERATIONS	0		0	0	0	
OTHER	732		297	182	152	
NUMBER OF KNOWN SYSTEM LEAKS	AT END OF YEAR SCHEDULE	D FOR R	EPAIR : 26			
ART D - EXCAVATION DAMAGE			PART E-EXCESS FL	OW VALUE(EFV) DATA	\	
IUMBER OF EXCAVATION DAMAG	ES: <u>76</u>			INSTALLED THIS CALE AL SERVICES: <u>3740</u>		
IUMBER OF EXCAVATION TICKETS	S : <u>54714</u>		ESTIMATED NUMBE SYSTEM AT THE EN		6	
PART F - LEAKS ON FEDERAL LAN	ID		PART G-PERCENT	OF UNACCOUNTED FO	R GAS	
OTAL NUMBER OF LEAKS ON FEE	DERAL LAND REPAIRED OR	۲	UNACCOUUNTED FOR GAS AS A PERCENT OF TOTAL INPUT FOR THE 12 MONTHS ENDING JUNE 30 OF THE REPORTING YEAR.			
			INPUT FOR YEAR E	NDING 6/30: <u>3.4%</u>		
PART H - ADDITIONAL INFORMATIO	ON					
Service leak repairs (Total and Hazard	Jous) include 1 nazardous ab	bove gro	unα ieaκ repairs (1 Oth	her Outside Force Dama	je)	
	IZED SIGNATURE					
PART I - PREPARER AND AUTHOR						
ART I - PREPARER AND AUTHOR John DiStefano,Pri (Preparer's Nar			A)	(516) 545-3376 Area Code and Telephone	e Number)	

<u>PUC 3-2</u>

Request:

Of the areas listed in Data Request 3-1, please indicate which are included in the FY 2015 main replacement program.

Response:

Please see the chart below for the FY 2015 Main Replacement Program miles.

Municipality	Miles of Planned Replacement in FY 15
Barrington	2.8
Bristol	1.7
Central Falls	1.1
Cranston	3.8
E. Greenwich	0.2
E. Providence	6.3
Johnston	3.0
Middletown	1.7
Newport	1.2
N. Kingstown	3.1
N. Providence	1.0
Pawtucket	1.9
Providence	10.0
Smithfield	0.2
Warren	0.2
Warwick	10.0
Westerly	3.9
Woonsocket	1.0
Total	53.1

<u>PUC 3-3</u>

Request:

Please explain how National Grid prioritizes its main replacement work.

Response:

National Grid identifies, evaluates, and prioritizes gas main segments for replacement in accordance with Company Procedure ENG04030, a copy of which is provided as Attachment PUC 3-3. The Company considers the following factors in prioritizing main replacement work:

- 1) Requests from the Field Operations personnel working on mains, which are reviewed throughout the year
- 2) Mains located in Public Improvement Job Areas, which are also reviewed throughout the year coordinated by Field Operations personnel with Public Works Engineers
- 3) Pipe segment analysis using the National Grid Risk Factor formula. This formula takes into account the following major factors in determining relative risk of each segment:
 - 10-year leak repair history (number of leak repairs)
 - Class of leak repaired
 - Number and type of buildings in area
 - Pipe size and material
- 4) Lab failure analysis reports provided and reviewed by Gas Distribution Engineering for systemic issues throughout the year

Identification, Evaluation and Prioritization of Steel Distribution Main Segments for Replacement ENG04030

1. Purpose

This procedure describes and details the identification, evaluation, and prioritization of distribution main segments for replacement, and prescribes methods to be used for corrective action.

Potential areas of active corrosion are identified using leakage surveys in conjunction with an analysis of the corrosion and leak history records.

2. Responsibilities

Distribution Engineering or designee shall be responsible to:

- Gather and evaluate gas facility and leak data, and determine required calculations.
- Determine qualification and prioritization procedure and remedial action for active corrosion, non-active continuing corrosion, and other systemic integrity issues.

Main and Service Replacement or designee shall be responsible for:

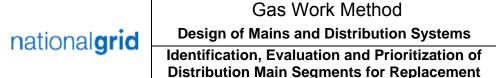
• Identifying main segments for replacement and prioritizing them according to this procedure.

3. Personal & Process Safety

All required PPE shall be worn or utilized in accordance with the current National Grid Safety Policy when performing tasks associated with this document.

4. Operator Qualification Required Tasks [Qualified or Directed & Observed]

None


5. Content

- 5.1 Identification of Main Segments for Replacement
 - a. Main segment candidates are identified through four avenues:
 - 1) Field Requests, which will be reviewed throughout the year.
 - 2) Mains located in Public Improvement Job Areas, which will also be reviewed throughout the year, as requested by Field Operations and/or Public Works employees.
 - 3) Annual screenings by Main and Service Engineering, as deemed appropriate. Screenings will vary among the regions, based on the data and tools available for the systems.
 - 4) Lab failure analysis reports reviewed by Distribution Engineering for systemic issues.
 - b. All identified main segment candidates shall be evaluated and prioritized by Main and Service Engineering in accordance with the criteria set forth in this procedure. Minimum segment lengths for screening and engineering review will vary among the regions, however, no Engineering review is required for O&M replacements up to 50 feet. Segments identified by Distribution Engineering for systemic integrity issues will be replaced and prioritized as determined appropriate by Distribution Engineering.

5.2 Evaluation/Prioritization of Steel Main Segments for Replacement

- a. Data Collection Minimum Data Required:
 - 1) All Repaired Corrosion Leaks on Main Segment for the last 10 years (not service leaks)

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.	© National Grid Gas plc 2012 – All Rights Reserved		
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO	THE APPROPRIATE DEPARTMENT WEBS	SITE OR DOCUMENTUM™.	
FILE: ENG04030 Identification, Evaluation and Prioritization of	ORIGINATING DEPARTMENT:	SPONSOR:	
Steel Distribution Main Segments for Replacement	STANDARDS, POLICIES AND CODES	SUSAN FLECK	

Doc.# ENG04030

- 2) All Open Leaks that are believed to be on the actual Main Segment
- b. For all applicable leaks, the following data is required:
 - 1) Leak Number
 - 2) Date (date found for open leaks, date repaired for repaired leaks)
 - 3) Leak Class (original class for open leaks, repaired class for repaired leaks)
 - 4) For repaired leaks, the following additional data is also required:
 - i. Number of Clamps Installed to Repair and specific clamp locations
 - ii. Condition of Main When Repaired
 - iii. Address Based Leak Location
 - iv. Length of segment exhibiting significant leak activity (i.e. from first leak to last leak).
 - v. Building Types in Area of Main Segment (None, Single Family Houses, Small Buildings, Public Buildings)
- c. Calculate a main deterioration factor ("D") using the formula:

$$D = N \times 500 / L_{(calc)}$$

Where:

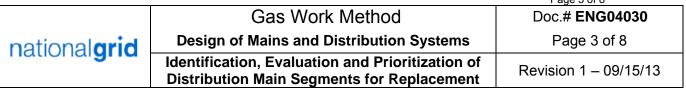
 $L_{(calc)}$ = Length of Segment exhibiting significant leak activity (i.e. first leak to last leak).

The segment length used in calculations is not necessarily the total length being considered for replacement. "L" should be determined by the evaluating engineer as the length of the segment exhibiting significant leak activity. In no case should the length used for calculations extend beyond the locations of the leaks).

and

N = Repair Factor (within the defined " L_{calc} ").

- 1) If the leak was repaired with 1 clamp, by another method, or is still open, N=1
- 2) If the leak was repaired with 2-3 clamps, N=2
- 3) If the leak was repaired with 4-5 clamps, N=3
- 4) If the leak was repaired with 6-7 clamps, N=4
- 5) If the leak was repaired with >7 clamps, N=5


THE SUM OF ALL THE "N"S FOR EACH LEAK IS PLUGGED INTO THE FORMULA

This method estimates the deterioration according to the actual number of physical repairs and normalizes it for the length of the segment.

d. Calculate an incident probability factor ("P") using the formula:

 $\label{eq:P} P = \{ [(\# \mbox{Class1 Leaks}/0.5) + (\# \mbox{Class2A Leaks}/1.5) + (\# \mbox{Class2 Leaks}/2) + (\# \mbox{Class3 Leaks}/3)] x \ 500 \} / \ L_{(\mbox{calc})}$

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.	© National Grid Gas plc 2012 – All Rights Reserved		
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO	THE APPROPRIATE DEPARTMENT WEBS	SITE OR DOCUMENTUM™.	
FILE: ENG04030 Identification, Evaluation and Prioritization of	ORIGINATING DEPARTMENT:	SPONSOR:	
Steel Distribution Main Segments for Replacement	STANDARDS, POLICIES AND CODES	SUSAN FLECK	

This method estimates public safety incident probability by weighting each leak based on how far the gas migrated toward buildings, again normalized according to the segment length. (Note – If leak class is unknown, Class 2A will be assumed).

e. Calculate a risk factor ("R") using the formula:

 $R = P \times C$

Where:

P = Probability Factor Calculated in previous step.

C = Consequence Factor

- 1) If there are no buildings in the area, C = 0
- 2) If there are only single family homes, C = 1
- 3) If there are small buildings (multi-family, strip mall, etc), C = 1.2
- 4) If there are public buildings (school, church, hospital, etc) C = 1.5

This is the standard Risk Analysis calculation where Risk is defined as the product of the likelihood of an event and the potential consequence of that event. Consequences increase with building size and number of people affected.

f. Calculate the preliminary prioritization factor ("Pr") using the formula:

Pr = D + R

Where:

D = Deterioration Factor Calculated in "c".

R = Risk Factor Calculated in "e".

The prioritization calculation takes into account both the deterioration of the main and the risk to public safety.

- g. The following adjustments may be needed:
 - Before making a final determination and prioritization of a main segment replacement, the details of the job are reviewed and "engineering judgment" is applied where appropriate. This application may result in the following types of adjustments:
 - i. Changing the priority of the job
 - ii. Increasing or decreasing the job length/scope
 - iii. Breaking the job into smaller segments
 - iv. Merging several segments into one job
 - 2) These adjustment may be made based on the following types of information, if available and applicable:
 - i. Analysis of the age of the leaks and any increasing frequency of leak occurrences
 - ii. Pipe vintage and service insert activity associated with the main
 - iii. Service leaks at the main connection due to corrosion
 - iv. Adjustments based on very long or very short segments
 - v. Observed pipe condition from leak repair data

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.	© National Grid Gas plc 2012 – All Rights Reserved		
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO	THE APPROPRIATE DEPARTMENT WEBS	SITE OR DOCUMENTUM™.	
FILE: ENG04030 Identification, Evaluation and Prioritization of	ORIGINATING DEPARTMENT:	SPONSOR:	
Steel Distribution Main Segments for Replacement	STANDARDS, POLICIES AND CODES	SUSAN FLECK	

Gas Work Method Doc.# ENG04030 **Design of Mains and Distribution Systems** Identification. Evaluation and Prioritization of **Distribution Main Segments for Replacement**

- vi. Observed pipe condition from recent field exposure
- vii. Clustering of repairs and/or clamps along the segment
- viii. Other replacement jobs in the vicinity
- Cathodic protection systems in place ix.
- Specific locations of intersections, fittings, material transitions, diameter transitions, Х. etc.
- Customer complaints, Executive complaints, Regulatory Agency complaints xi.
- xii. Corporate good will
- xiii. Unusual hazards or exposure in the area
- xiv. Proximity to gas regulating equipment
- XV. Proximity to transmission main
- xvi. Unusual difficulty or expense of repairs
- xvii. Main location
- xviii. Identification of outdated construction methods or problematic materials or fittings
- xix. Depth of cover and soil conditions
- High open leak counts XX.
- xxi. Water intrusion or other geographic considerations
- xxii. Any special or unusual conditions or considerations identified by Field Operations
- xxiii. Any other safety, integrity, operational or economic factors that are available and deemed appropriate

Segments that qualify based on their preliminary prioritization calculation may not be disgualified by adjustments.

- h. Qualification of job for replacement:
 - 1) Jobs will be approved and prioritized based on the calculated Prioritization Factor "Pr" and applied adjustments. Enough jobs should be approved to accommodate the replacement levels determined by the model(s) in use at the time.

Some jobs will be mandatory to replace.

- In general, a condition of "Active Corrosion" will be determined when the preliminary Prioritization Factor ("Pr") calculation exceeds 12.
- 3) Each region will be further responsible for declaring jobs as "Active Corrosion" by modifying this criterion based on specific regional operating conditions as required, in order to comply with any more stringent definitions provided by the regulators in the State(s) in which the region operates.
- 4) Any unprotected bare steel main containing "Active Corrosion" must be replaced within two years in NY and three years in MA – unless extenuating circumstances make it unfeasible to do so, in which case, other appropriate mitigative measures are to be taken.
- 5) Any unprotected coated steel main containing "Active Corrosion" must have cathodic protection engineered and installed within one year or be replaced within two years in NY

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.	© National Grid Gas plc 2012 – All Rights Reserved		
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO	THE APPROPRIATE DEPARTMENT WEBS	SITE OR DOCUMENTUM™.	
FILE: ENG04030 Identification, Evaluation and Prioritization of	ORIGINATING DEPARTMENT:	SPONSOR:	
Steel Distribution Main Segments for Replacement	STANDARDS, POLICIES AND CODES	SUSAN FLECK	

and three years in MA - unless extenuating circumstances make it unfeasible to do so, in which case, other appropriate mitigative measures are to be taken.

- 6) Any cathodically protected main containing "Active Corrosion" must be brought up to acceptable cathodic protection within one year or replaced within two years in NY and three years in MA unless extenuating circumstances make it unfeasible to do so, in which case, other appropriate mitigative measures are to be taken. (An example of such a circumstance may be when a street is under guarantee or a moratorium from excavation).
- 7) In NYC and LI, another label is given to each job to provide a macro view as to the type of work to be performed throughout the year.
 - i. A "TS 300" label is associated with any job exceeding the preliminary Prioritization Factor ("Pr") calculation of 12, known as "Active Corrosion". This label is also given to both cast iron and plastic jobs, however it is known that main segment is not actively corroding and there is no mandated timetable to replace.
 - ii. A TS 900 label is given to any job which has received additional points from Public Works considerations (as described below).
 - iii. A TS 800 label is given to the remainder of the jobs in which the preliminary Prioritization Factor ("Pr") calculation does not exceed 12 and will be replaced according to resources and replacement level recommendations.
- i. Impact Identification:
 - 1) Every approved job should be processed through the Planning and Corrosion areas of Gas Systems Engineering for:
 - i. Sizing (determining the appropriate replacement material and diameter).
 - ii. Determining if the replacement will have any impact on existing cathodic protection systems.
 - iii. Determining if abandonment is an appropriate option over replacement.
 - iv. Determining if a system uprating is an appropriate option as part of the replacement.

5.3 Evaluation/prioritization of cast iron main segments for replacement

- a. Cast Iron Main Segments will be evaluated in a similar manner as Steel Main segments, where the Prioritization factor will be the sum of the Deterioration Factor and the Risk factor (Pr = D + R).
- b. Candidates are reviewed based primarily on breakage and/or graphitization history; and all segments that contain 2 or more breaks and/or graphitization repairs within 400 ft. must be reviewed.
- c. If the candidate segment has had 2 or more breaks and/or graphitization repairs within 400 ft. and the MAOP is greater than six inches of water column – the segment has automatic approval for replacement. The Prioritization score will automatically be set at 12 (TS300)
- d. If the candidate segment doesn't have at least 2 breaks and/or graphitization repairs or if the pressure is six inches of water column or less approval will be based on the Prioritization calculation
 - i. If Pr ≥ 12, replacement will be required (however, a cast iron segment is not deemed active corrosion)

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.	© National Grid Gas plc 2012 – All Rights Reserved		
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO	THE APPROPRIATE DEPARTMENT WEBS	SITE OR DOCUMENTUM™.	
FILE: ENG04030 Identification, Evaluation and Prioritization of	ORIGINATING DEPARTMENT:	SPONSOR:	
Steel Distribution Main Segments for Replacement	STANDARDS, POLICIES AND CODES	SUSAN FLECK	

- ii. If Pr < 12, prioritize and replace according to resources and replacement level recommendations
- e. The Repair Factor "N" (as defined 5.2 c for steel evaluation), will be assigned for each leak, as follows:
 - 1) For cast iron main breaks, graphitization (corrosion of cast iron) and joint leak repairs are examined.
 - i. If the leak is still open, N = 1
 - ii. If the leak was repaired only by joint sealing, N = 0.5 (however, in NYC, because a major percentage of joints have previously been sealed, no more than 5 years of joint leak history should be counted)
 - iii. If the leak was a break or crack, N = 3
 - iv. If the leak was a the result of graphitization, N = 3
- f. Engineering judgment should also be applied to both the prioritization and determination of the segment length to be replaced based on the pressure, diameter, dates of failures, surrounding areas, etc.

5.4 Evaluation/prioritization of plastic main segments for replacement

- a. Vintage Plastic Main Segments shall be evaluated by Distribution Engineering based on Lab Failure Analysis Reports that are reviewed for systemic issues.
 - When Distribution Engineering determines that a systemic issue exists in a specific main segment due to improper fusion or other construction defects, the entire affected section of main will be qualified as an automatic prioritization calculation of 12 and scheduled for replacement within two/three years (based on region).
 - When Distribution Engineering determines that a systemic issue exists in a specific main segment due to slow crack growth resulting from prior squeeze offs, point loading failures, material deterioration, etc.; the entire affected section of main will be qualified as an automatic prioritization calculation of 12 and scheduled for replacement within two/three years (based on region).
- b. Other Plastic Main Segments (including non-vintage plastic) will be evaluated in a similar manner as Steel Main segments, where the Prioritization factor will be the sum of the Deterioration Factor and the Risk factor (Pr = D + R).
- c. For plastic pipe segments in "b", above, the following criteria shall apply:
 - For plastic previous squeeze-offs, point loading failures (eg rock impingement) and material defects (eg – cracking) and construction defect failures (eg – butt fusion joint) are examined.

Where:

N = Repair Factor (within the defined "L")

- i. If the leak is still open, N = 1
- ii. If the leak was the result of an improper squeeze-off, N = 2 x (the number known squeeze-offs)
- iii. If the leak was the result of a point loading failure, N = 2

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.	© National Grid Gas plc 2012 – All Rights Reserved		
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO	THE APPROPRIATE DEPARTMENT WEBS	SITE OR DOCUMENTUM™.	
FILE: ENG04030 Identification, Evaluation and Prioritization of	ORIGINATING DEPARTMENT:	SPONSOR:	
Steel Distribution Main Segments for Replacement	STANDARDS, POLICIES AND CODES	SUSAN FLECK	

		Page 7 of 8
national grid	Gas Work Method	Doc.# ENG04030
	Design of Mains and Distribution Systems	Page 7 of 8
	Identification, Evaluation and Prioritization of Distribution Main Segments for Replacement	Revision 1 – 09/15/13

- iv. If the leak was a the result of a construction defect, N = 3
- v. If the leak was a the result of a material defect, N = 3

5.5 Reinforcements and Jobs in public improvement areas

a. Additional adjustments may be applied for candidate segments in public works areas or for which reinforcement opportunities have been identified - by the addition of a Public Works (PW) and/or Reinforcement (RI) factor to the Prioritization calculation:

$$Pr = D + R + PW + RI$$

- 1) For Road Resurfacing, PW = 2.4
- 2) For Road Reconstruction, PW = 4.2
- 3) For Size-Pressure Upgrade Reinforcement, RI = 2.5

These factors are applied because of potential cost savings in combining main replacements with other work, as well as anticipated avoidance of performing work on protected streets that were recently improved.

5.6 Distribution Integrity Management Program (DIMP) Prioritization Factors

a. Additional adjustments may be applied for candidate segments which belong to an asset group which has been identified by National Grid's Distribution Integrity Management Program (DIMP) for accelerated attrition by the addition of a DIMP (IM) factor to the Prioritization calculation:

$$Pr = D + R + PW + RI + IM$$

These factors are applied in order to help accelerate the attrition of mains which belong to an asset group which is known to have a higher likelihood of incident or is of a high relative risk.

b. The current IM factors for each applicable Operating Region and Asset Class can be found in Attachment 1, DIMP Factor List 2012. Distribution Engineering may update these factors at any time (without the need to update this procedure) and Main and Service Replacement should utilize the most recent factors.

IMPORTANT: These adjustments (except "IM") are only to be used to qualify a job that previously did not qualify, or to upgrade the priority of a qualified job. As they have no direct connection on the actual performance of the specific pipe segment being evaluated, they may not upgrade a job to active corrosion status (Pr > 12).

6. Knowledge Base & References (Click here)

Know	vledge Base	References
1 - Compliance History	5 - Job Aid	1 - Regulatory – Codes
2 - Data Capture	6 - Learning & Development	2 - Technical Documents
3 - Definitions	7 - Standard Drawings	3 - Tools Catalog
4 - Document History	8 - Tools & Equipment	

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.	© National Grid Gas plc 2012 – All Rights Reserved			
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE OR DOCUMENTUM™.				
FILE: ENG04030 Identification, Evaluation and Prioritization of	ORIGINATING DEPARTMENT:	SPONSOR:		
Steel Distribution Main Segments for Replacement	STANDARDS, POLICIES AND CODES	SUSAN FLECK		

national grid	Gas Work Method	Doc.# ENG04030
	Design of Mains and Distribution Systems	Page 8 of 8
	Identification, Evaluation and Prioritization of Distribution Main Segments for Replacement	Revision 1 – 09/15/13

7. Attachments

Attachment 1: DIMP Factor List 2012

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.	© National Grid Gas plc 2012 – All Rights Reserved			
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE OR DOCUMENTUM™.				
FILE: ENG04030 Identification, Evaluation and Prioritization of	ORIGINATING DEPARTMENT:	SPONSOR:		
Steel Distribution Main Segments for Replacement	STANDARDS, POLICIES AND CODES	SUSAN FLECK		

<u>PUC 3-4</u>

Request:

Please provide the frequency of leak detection activities in urban areas.

Response:

Leak detection surveys are conducted by the Company on the following schedule:

- Services are surveyed every three (3) years
- Mains are surveyed every three (3) years

In addition, the Company also conducts the following survey activities:

- Winter Frost Patrol Surveys–Determined by the Construction and Maintenance Manager to survey all cast iron and ductile iron mains.
- Cast Iron Encroachments are surveyed daily until any encroachment has been resolved.
- Blasting Survey Ares are surveyed pre and post blasting.
- Available Opening Survey: Walking survey within the Business District areas. Conducted during the Winter months: Minimum of (1) completed cycle.
- Business District Survey: (Mobile survey of Business District areas) Conducted during Winter months: Minimum of one (1) completed cycle. (initiated by Leak Survey Supervisor).
- Leakage Survey / All pipe: Three year cycle to complete all gas services and main pipeline. (Walking Survey).

The Company monitors the leak detection as follows:

PUC 3-4, page 2

Leak Monitoring Schedule

Rhode Island Gas Operations monitors and addresses all pending leaks as discovered as follows.

- **Type 1**: Type 1 leaks shall be made safe and monitored daily until the necessary actions are taken to eliminate the Type 1 leak.
- **Type 2**: Leaks that are classified as Type 2 shall be monitored within the 60 days for migration areas that are considered paved and 120 days for migration areas that are not considered unpaved.
- **Type 2A**: Leaks that are classified as Type 2A shall be monitored within the 14 days for migration areas that are considered paved and 30 days for migration areas that are not considered unpaved.
- **Type 3**: Leaks that are classified as Type 3 shall be monitored within the month of the one-year anniversary that the leak was discovered.

The Company re-checks leaks repaired as follows:

Re-check Leak Process:

- **Type 1**: Type 1 leaks shall be checked the day after and within 30 days of the repair.
- **Type 2 Leaks with Manhole Readings**: Type 2 Leaks with manhole readings shall be checked within 30 days of the repair.
- **Type 2A**: Type 2A leaks shall be checked within 30 days of the repair.

Data for the surveillance and re-check of leaks is recorded and maintained by the Company. The Company's technicians are required to take appropriate action if the classification of the leak subsequently changes.

<u>PUC 3-5</u>

Request:

Please provide a copy of National Grid's gas emergency response plan for Rhode Island.

Response:

National Grid's current Emergency Response Plan (the "Plan") is being revised and will be available in May. However, if the PUC would like a copy of the current version of the Plan, the Company can produce it.