The Narragansett Electric Company

d/b/a National Grid (Interstate Reliability Project)

RIPUC Dkt. No. 4360

Joint Testimony of

Gabriel Gabremicael, P.E. and

Mark Stevens, P.E.

November 21, 2012

1	Q.	Mr. Gabremicael, please state your name and business address.
2	A.	My name is Gabriel Gabremicael. My business address is 40 Sylvan Road, Waltham,
3		Massachusetts 02451.
4	Q.	By whom are you employed and in what position?
5	A.	I am employed as a Manager of Transmission Planning – New England by National Grid
6		USA Service Company, Inc. d/b/a National Grid ("National Grid") in the Transmission
7		Planning Department.
8	Q.	What are your responsibilities in that position?
9	A.	I am responsible for transmission planning for National Grid in its New England service
10		territory. Transmission Planning includes determination of need for reinforcement of the
11		transmission system, evaluation of alternative solutions, and selection of the most
12		satisfactory solution.
13	Q.	Please describe your education, training and experience.
14	A.	I graduated from Northeastern University in 1987 with a Bachelor of Science degree in
15		Electrical Engineering. In 1991 I obtained a Master of Science degree in Electrical
16		Engineering, with a concentration in Electric Power Systems, from Northeastern
17		University. I have over twenty five years of experience in power system planning and
18		analysis. I am also a Registered Professional Engineer in the Commonwealth of
19		Massachusetts.
20		I have been working at National Grid for approximately twenty-six years. During this
21		time, I have held engineering assignments in the Division Engineering, Relay and Control

1		Engineering, Operations Engineering, and the Transmission Planning Departments. I
2		have been responsible for many transmission planning studies including studies relating
3		to the Interstate Reliability Project (the "Project").
4	Q.	Have you previously testified before the Massachusetts Energy Facility Siting Board or
5		the Massachusetts Department of Public Utilities?
6	A.	Yes I have testified in EFSB 97-3/D.P.U. 97-98/97-99 with regards to the need for the
7		Dorchester-Quincy 115 kV underground cable and in D.P.U. 09-27/09-28 with regard to
8		the need for a new 115 kV transmission line from the King Street Substation to the West
9		Amesbury Substation.
10	Q.	Mr. Stevens, please state your name and business address.
11	A.	My name is Mark Stevens. My business address is 40 Sylvan Road, Waltham,
12		Massachusetts 02451.
13	Q.	By whom are you employed and in what position?
14	A.	I am employed as a Lead Engineer by National Grid in the Transmission Planning
15		Department.
16	Q.	What are your responsibilities in that position?
17	A.	I am responsible for transmission system planning for National Grid in its New England
18		service territory.
19	Q.	Please describe your education, training and experience.
20	A.	I am a graduate of the University of Vermont, holding a Bachelor of Science degree in
21		Electrical Engineering; I am also a graduate of Northeastern University, holding a Master

1		of Science degree in Electrical Engineering. I have nine years of experience in power
2		system planning and analysis. I have been a Lead Engineer in the Transmission Planning
3		Department since July of 2007; prior to that I was a Senior Engineer in the department
4		since October of 2003. During this time, I have been responsible for many transmission
5		planning studies related to the Interstate Reliability Project (the "Project"). From
6		September 1995 to October 2003, I was employed as an electrical engineer in the Energy
7		Management System group in the Dispatching Department at National Grid. I am also a
8		Registered Professional Engineer in the Commonwealth of Massachusetts.
9	Q.	Have you previously testified before public utility regulatory bodies in Massachusetts or
10		Rhode Island?
11	A.	Yes. I have presented testimony before the Massachusetts Department of
12		Telecommunications and Energy in 2006 for an additional transmission tap line to the
13		Whitins Pond Substation (located in Uxbridge, Massachusetts) from the R-144
14		transmission line . I also prepared prefiled testimony for submission to the Rhode Island
15		Public Utilities Commission in Docket 4029, National Grid's Rhode Island Reliability
16		Project. I did not testify because the Public Utilities Commission did not have a quorum.
17		However, I sponsored the same testimony and testified before the Energy Facility Siting
18		Board in the Rhode Island Reliability Project.
19	Q.	Mr. Gabremicael and Mr. Stevens, are you familiar with the Interstate Reliability Project?
20	A.	Yes, we are. In conjunction with other planners from National Grid and Northeast
21		Utilities, we participated in the Southern New England Regional Working Group, led by

1	the Independent System Operator – New England ("ISO-NE"), which embarked on a
2	coordinated series of studies to evaluate the reliability and performance of the electric
3	transmission system serving Southern New England. The Interstate Reliability Project
4	arose out of these studies. The studies are documented in the following reports which are
5	included as appendices A through E and N and O of the Environmental Report:
6	• ISO-NE, Southern New England Transmission Reliability Report 1 – Needs
7	Analysis (January 2008) [referred to as "2008 Needs Analysis"].
8	• ISO-NE, New England East-West Solution (Formerly Southern New England
9	Transmission Reliability (SNETR)) Report 2, Options Analysis (June 2008)
10	[referred to as "2008 Options Analysis"].
11	• CL&P, National Grid Solution Report for the Interstate Reliability Project
12	(August 2008) [referred to as "2008 Solution Report"]
13	• ISO-NE, New England East-West Solution (NEEWS): Interstate Reliability
14	Project Component Updated Needs Assessment (April 2011) [referred to as "2011
15	Needs Assessment"].
16	• ISO-NE, New England East-West Solution (NEEWS): Interstate Reliability
17	Project Component Updated Solution Study Report (February 2012) [referred to
18	as "2012 Solution Report"].
19	• ISO-NE, Follow-Up Analysis to the 2011 New England East-West Solution
20	(NEEWS): Interstate Reliability Project Component Updated Needs Assessment
21	[referred to as "2012 Follow-Up Needs Analysis"].

1		• ISO-NE, Follow-Up Analysis to the 2012 New England East-West Solution
2		(NEEWS): Interstate Reliability Project Component Updated Solution Study
3		Report (September, 2012) [referred to as "2012 Follow-Up Solution Report"].
4	Q.	Mr. Gabremicael and Mr. Stevens, are you familiar with National Grid's Energy Facility
5		Siting Board Application, including the ER prepared by AECOM for the Project?
6	A.	Yes, we prepared the description of the need for the Project in the Environmental Report.
7	Q.	What is the Interstate Reliability Project?
8	A.	The Project is an expansion and reinforcement of the bulk transmission system in Rhode
9		Island, Massachusetts and Connecticut, to comply with national and regional reliability
10		standards and criteria, to alleviate overloaded lines and equipment, and to address
11		potential voltage violations. The major components of the Project are new 345 kV
12		transmission lines from the Millbury No. 3 Switching Station in Millbury, Massachusetts
13		to the West Farnum Substation in North Smithfield, Rhode Island and from the West
14		Farnum Substation to the Lake Road Switching Station and then to the Card Street
15		Substation in Connecticut. The Project is a solution to problems identified in the New
16		England East-West Solutions (NEEWS) Planning studies. These studies were conducted
17		by a working group comprised of representatives of ISO-NE, National Grid and
18		Northeast Utilities. We represented National Grid on the working group. The NEEWS
19		Study was one of the most geographically comprehensive planning efforts to-date in New
20		England since the construction of the original 345 kV network in the 1960's, addressing
21		five interrelated problems in three states and multiple service territories. The analysis

1		was aimed at addressing the weaknesses of the transmission system in southern New
2		England. NEEWS will benefit all of the New England states by addressing the issues of
3		regional transmission system reliability and constrained generation.
4	Q.	What is the scope of your testimony in this proceeding?
5	A.	In our testimony, we will describe the transmission planning studies which have been
6		conducted and address several alternatives which were examined as part of the process.
7		A more detailed description is contained in Chapter 3.0 of the ER and in the studies listed
8		above. We will also address how the need for the Project has been impacted by changes
9		in the market and load forecasts that have occurred since the original studies were
10		completed.
11	Q.	Please describe the process by which National Grid determined that these transmission
12		system improvements were necessary.
13	A.	The need for reinforcement of the 345 kV transmission system in southern New England
14		was first identified in the 2008 Needs Assessment. This analysis was subsequently
15		updated by the 2011 Needs Analysis and ultimately by the 2012 Follow-up Needs
16		Analysis. The 2011 and 2012 analyses are described in detail in Sections 3.3 and 3.4 of
17		the ER. The assumptions, analyses, and results are described in detail in Sections 3.3 and
18		3.4 of the ER.
19	Q.	What did you conclude as a result of these analyses?
20	A.	The conclusion following the completion of the 2011 Needs Assessment was that the
21		Project is necessary for transmission system reliability. Without the Project, the system

1		would experience thermal overloads and voltage performance issues under certain
2		conditions and the inability to transfer power across southern New England. These
3		conclusions were reaffirmed in the 2012 Follow-Up Needs Analysis and ISO-NE
4		concluded that there is a continuing need to reinforce the 345 kV transmission system
5		into Rhode Island (West Farnum Substation), increase transmission transfer capability
6		from west to east and east to west in New England, and to increase the transmission
7		transfer capability into Connecticut.
8	Q.	Please describe the electrical alternatives to the Project that were considered by National
9		Grid.
10	A.	The Working Group identified five electrical alternatives that would resolve the
11		reliability issues which had been identified. These alternatives were designated as
12		options A-1, A-2, A-3, A-4 and C-2.1. (See, ER Sections 5.3 and 5.4). The four "A"
13		options would connect the Millbury No. 3 Switching Station, the West Farnum
14		Substation and/or the Sherman Road Switching Station, the Lake Road Switching
15		Station, and the Card Street Substation. Option C-2.1 would connect Millbury to the
16		Carpenter Hill Substation in Massachusetts and the Manchester Substation in
17		Connecticut. These options are described in detail Section 5.3.2 through 5.3.6 of the ER
18		and are evaluated in Sections 5.3.7 and 5.4 of the ER. The Working Group concluded
19		that Option A-1 was the preferred solution for electrical performance, economics, and
20		environmental impacts. The 2012 Follow-Up Solution Report confirmed the choice of
21		Option A-1 as the preferred solution. (See, ER Section 5.10).

1	Q.	What are the consequences of pursuing the "No-Build" option?
2	A.	The proposed transmission system improvements are required to satisfy the transmission
3		planning criteria and standards of National Grid, ISO-NE, NPCC, and NERC. Due to
4		existing and projected electricity demand levels and existing system limitations, these
5		planning criteria and standards require that the proposed transmission system
6		improvements be completed in a timely manner to provide reliable electric supply to the
7		area. Additionally, planning analysis has shown that contingency failures could lead to
8		overloading of facilities and/or low system voltages throughout southern New England.
9		The No-Build alternative would mean that National Grid would be unable to meet the
10		identified system needs and therefore is not an acceptable alternative.
11	Q.	Please describe the non-transmission alternatives analysis.
11 12	Q. A.	Please describe the non-transmission alternatives analysis. The non-transmission alternative analysis was performed by ICF International for
12		The non-transmission alternative analysis was performed by ICF International for
12 13		The non-transmission alternative analysis was performed by ICF International for National Grid and Northeast Utilities and is described in detail in the report "Assessment
12 13 14		The non-transmission alternative analysis was performed by ICF International for National Grid and Northeast Utilities and is described in detail in the report "Assessment of Non-Transmission Alternatives to the NEEWS Transmission Projects: Interstate
12 13 14 15		The non-transmission alternative analysis was performed by ICF International for National Grid and Northeast Utilities and is described in detail in the report "Assessment of Non-Transmission Alternatives to the NEEWS Transmission Projects: Interstate Reliability Project (December 1, 2011)" (Appendix K to the ER) and in the prefiled
12 13 14 15 16		The non-transmission alternative analysis was performed by ICF International for National Grid and Northeast Utilities and is described in detail in the report "Assessment of Non-Transmission Alternatives to the NEEWS Transmission Projects: Interstate Reliability Project (December 1, 2011)" (Appendix K to the ER) and in the prefiled testimony of Judah Rose from ICF. As part of its analysis, ICF has considered the
12 13 14 15 16 17		The non-transmission alternative analysis was performed by ICF International for National Grid and Northeast Utilities and is described in detail in the report "Assessment of Non-Transmission Alternatives to the NEEWS Transmission Projects: Interstate Reliability Project (December 1, 2011)" (Appendix K to the ER) and in the prefiled testimony of Judah Rose from ICF. As part of its analysis, ICF has considered the addition of generation in the ISO-NE Generation Interconnections Queue, energy

1		unprecedented levels of active demand resources and would cost between \$15 billion and
2		\$44 billion.
3	Q.	What is the conclusion of your analysis?
4	A.	After examining the transmission and non-transmission alternatives, it was determined
5		that the proposed alternative of new 345 kV transmission lines between the Millbury No.
6		3 Switching Station, the West Farnum Substation, the Lake Road Switching Station, and
7		Card Street Substation best addressed the transmission system needs and reliability
8		concerns identified by the Working Group.
9	Q.	Does this complete your testimony?
10	A.	Yes, it does.