STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS PUBLIC UTILITIES COMMISSION

THE NARRAGANSETT ELECTRIC COMPANY d/b/a NATIONAL GRID,	:
Plaintiff,	:
V.	:
	:
THE TOWN OF HOPKINTON; THOMAS	:
E. BUCK; SYLVIA THOMPSON;	:
BARBARA CAPALBO; BEVERLY	:
KENNEY; and WILLIAM FELKNER, in	:
their official capacities as members of the	:
Hopkinton Town Council,	
Defendants.	:
and	Docket No. 4076
	Docket No. 4076
THE NARRAGANSETT ELECTRIC	Docket No. 4076
	Docket No. 4076
THE NARRAGANSETT ELECTRIC	Docket No. 4076
THE NARRAGANSETT ELECTRIC COMPANY d/b/a NATIONAL GRID,	Docket No. 4076
THE NARRAGANSETT ELECTRIC COMPANY d/b/a NATIONAL GRID, Plaintiff,	Docket No. 4076
THE NARRAGANSETT ELECTRIC COMPANY d/b/a NATIONAL GRID, Plaintiff,	Docket No. 4076
THE NARRAGANSETT ELECTRIC COMPANY d/b/a NATIONAL GRID, Plaintiff, v.	Docket No. 4076
THE NARRAGANSETT ELECTRIC COMPANY d/b/a NATIONAL GRID, Plaintiff, v. THE TOWN OF HOPKINTON and BRAD	Docket No. 4076
THE NARRAGANSETT ELECTRIC COMPANY d/b/a NATIONAL GRID, Plaintiff, v. THE TOWN OF HOPKINTON and BRAD R. WARD, in his official capacity as the	Docket No. 4076

PREFILED TESTIMONY OF ALAN T. LABARRE, P.E. ON BEHALF OF THE NARRAGANSETT ELECTRIC COMPANY D/B/A NATIONAL GRID

September 24, 2009

- 1 Q. Please state your name and business address.
- 2 A. My name is Alan T. LaBarre. My business address is 40 Sylvan Road, Waltham,
- 3 Massachusetts.
- 4 Q. By whom are you employed and in what position?
- 5 A. I am employed by National Grid USA Service Company as Manager of Capacity Planning
 6 in the Network Asset Planning Department.
- 7 Q. What are your responsibilities as Manager of Capacity Planning?
- 8 A. I am responsible for assigning, prioritizing, reviewing, and approving the work performed
- 9 by engineers whose principal function is assessing the performance and planning the
- 10 development of National Grid's electrical distribution infrastructure. My functional
- 11 responsibility in this regard includes the New England and upstate New York service
- 12 territory of National Grid.
- 13 Q. Please describe your education, training, and experience.
- 14 A. I have a Bachelor of Science Degree in Electrical Engineering from the University of Rhode
- 15 Island. I am also a graduate of the Worcester Polytechnic Institute's School of Industrial
- 16 Management. I am a registered Professional Engineer in the State of Rhode Island. I have
- 17 21 years of professional experience in the area of electrical distribution infrastructure
- 18 planning at National Grid. During the first 12 years of this experience (1988 2000), I was
- 19 directly responsible for the execution of area distribution system planning studies within the
- 20 central and southeastern portions of National Grid's Massachusetts service territory. Over
- 21 the remaining 9 years (2000 present), I have managed engineering groups either
- responsible for the completion of area distribution planning reviews or the development of
- 23 tools and analysis procedures used by planning engineers. These managerial positions were:

The Narragansett Electric Company d/b/a National Grid PUC Docket No. 4076 (Hopkinton Substation) Witness: Alan T. LaBarre, P.E.

1		Manager of District Engineering for the Southeast District of Massachusetts Electric from
2		1/2000 – 5/2002, Manager of Distribution Planning and Engineering for The Narragansett
3		Electric Company from 5/2002 - 4/2004, Manager of System Planning and Engineering for
4		National Grid USA Service Company from 4/2004 - 4/2005, Manager of Network Planning
5		and Reliability for National Grid USA Service Company from $4/2005 - 7/2008$, and
6		Manager of Capacity Planning from 7/2008 - present.
7	Q.	Have you previously testified before the PUC or the EFSB?
8	A.	Yes. I provided testimony before the PUC and the EFSB on the need for and benefits
9		related to the development of National Grid's Tower Hill substation located in North
10		Kingstown, RI. These proceedings took place in 2006.
11	Q.	Are you familiar with National Grid's proposed new substation in Hopkinton, Rhode Island
12		(the "Project")?
13	A.	Yes, I am familiar with the Project.
14	Q.	What is the scope of your testimony in this proceeding?
15	A.	I will summarize the planning process by which National Grid identifies the need for
16		electrical distribution system infrastructure development and describe the specific Study
17		Area in which the Project is located. I will also explain the benefit of the Project to electric
18		customers and explain how the Project was selected as the proper alternative among other
19		options and why those alternatives are not viable. Finally, I will also explain the distribution
20		circuit (feeder) system improvements that will be made as part of the Project.
21	Q.	Please describe the process by which National Grid determines that distribution system

The Narragansett Electric Company d/b/a National Grid PUC Docket No. 4076 (Hopkinton Substation) Witness: Alan T. LaBarre, P.E.

A. The Annual Capacity Plan is the primary means used to identify existing and long range
needs of the distribution system and to recommend infrastructure development solutions that
will provide reliable and economic electric delivery service to National Grid customers. The
Annual Capacity Plan process reviews the electric infrastructure within specific geographic
areas (Study Areas). The Annual Capacity Plan presently identifies distribution system
infrastructure development requirements required to address facility loading concerns that
are projected to occur within the next five years.

8 When conducting the Annual Capacity Planning process, Power Supply Area (PSA) 9 forecasts, published by the National Grid Energy Portfolio Management Department, are 10 used to project annual loads in the Study Area for the study period. To complement the PSA 11 forecasts, the Study Area historical annual load growth rate is calculated and anticipated 12 large spot loads are identified. Taking all these variables into consideration, annual peak 13 loads are projected for all distribution feeders, distribution supply lines (sub-transmission 14 lines), and substation supply transformers within a Study Area.

After distribution system loads are projected, we perform diagnostic analysis of equipment loading and system voltage performance, under both normal and contingency conditions. Service reliability is assessed to identify existing and anticipated problems. If the existing infrastructure is inadequate or will become inadequate before the end of the review period, infrastructure improvement plans are developed to resolve the area problems. The plans that are developed consider the establishment of new facilities and/or the expansion of existing facilities.

Q. Please describe the Study Area and geographic area to which the Project relates and why a
comprehensive plan is required.

1	А.	The South County West Study Area encompasses the towns of Charlestown, Hopkinton,
2		Richmond, Westerly, and the western section of South Kingstown. The Study Area has
3		approximately 31,000 customers with a summer peak load of approximately 95 MW. A
4		comprehensive plan is required to address multiple existing and projected feeder,
5		transformer, and distribution supply line loading issues in the Study Area.
6	Q.	What need was identified in the South County West Study Area?
7	A.	The 2007 Annual Capacity Plan first identified a number of thermal overloading concerns in
8		the South County West Study Area and recommended the new Hopkinton substation to
9		address these concerns. In its most recent update, the 2009 Annual Capacity Plan reaffirmed
10		the extent of overloading concerns in the South County West Study Area. These concerns
11		include one transformer and four feeders projected to be loaded above their summer normal
12		rating. In addition to normal loading concerns, three transformers and two distribution
13		supply lines are projected to exceed their summer emergency ratings. The 2009 Annual
14		Capacity Plan incorporates the latest forecasts including the consequences of the recent
15		economic downturn which we are experiencing.
16	Q.	What does this mean for customers?
17	A.	Maximum loading of electrical equipment is determined by National Grid and expressed as
18		normal ratings or normal capabilities. This is the maximum loading considered acceptable
19		for the equipment under normal operating conditions. Emergency ratings or capabilities are
20		the maximum equipment loading considered acceptable during system contingency
21		operations. These ratings are applied for relatively short periods of time, generally less than
22		24 hours.

The Narragansett Electric Company d/b/a National Grid PUC Docket No. 4076 (Hopkinton Substation) Witness: Alan T. LaBarre, P.E.

1		The concerns identified in the 2009 Annual Capacity Plan indicate that electric
2		system equipment loading is approaching normal capabilities and exceeds emergency
3		capabilities during system contingencies at many locations. If equipment loading above
4		capability is left unaddressed, it can lead to customer service interruptions resulting from
5		equipment failure. To prevent equipment failure due to load in excess of capability, system
6		operators may be required to interrupt service to certain customers during peak system load
7		periods. In addition, heavily loaded equipment also reduces the flexibility system operators
8		have to rearrange the distribution system during outages resulting from other causes such as
9		tree contact with overhead lines, wind storm damage, motor vehicle pole hits, etc. When
10		system operators cannot rearrange the distribution system to bypass damaged facilities,
11		customer service restoration must wait until system repairs are made. Restoration of service
12		via system rearrangement can typically be completed within 2-4 hours while restoration that
13		must wait for system repairs can often take between 4-24 hours. It is also important to note
14		that with equipment loading approaching normal capabilities it becomes more difficult to
15		serve new customers in a timely, economic, and reliable manner.
16	Q.	Please identify the specific transformers, feeders and other equipment that are projected to
17		exceed their normal or emergency ratings.
18	A.	Attached as attachments ATL-1 through 3 are listings of projected normal and contingency
19		peak loads on all South County West Study Area distribution feeders, substation supply
20		transformers and distribution supply lines, respectively, from the 2009 Annual Capacity
21		Plan.
22		The projected system overloads of greatest concern are as follows:

1		• Existing peak loading on the Wood River transformer T10 exceeds and is projected to
2		continue to exceed summer emergency rating in 2009 and beyond for the loss of the
3		larger Wood River transformer T20 on peak.
4		• Existing peak loading on Westerly transformers T2 and T4 exceeds and is projected to
5		continue to exceed summer emergency rating in 2009 for the loss of either transformer
6		on peak.
7		• Loading on Ashaway transformer T1 is projected to exceed summer normal rating in
8		2015.
9		• Loading on Westerly feeders 16F1 and 16F2 is projected to exceed summer normal
10		ratings by 2012.
11		• Loading on Kenyon feeder 42F1 is projected to exceed summer normal ratings by 2014.
12		• Loading on Ashaway feeder 43F1 is projected to exceed summer normal rating by 2015.
13		• Loading on Wood River supply line 85T2 is projected to exceed summer emergency
14		rating by 2009 for the loss of either supply line 85T3 or Westerly transformer T4 on
15		peak.
16		• Loading on Wood River supply line 85T3 is projected to exceed summer emergency
17		rating by 2011 for the loss of either supply line 85T2 or Westerly transformer T2 on
18		peak.
19	Q.	How do overloads on transformers in Westerly and feeders in Charlestown affect customers
20		in Hopkinton?
21	A.	The electrical system is operated as an interconnected grid and customers in Hopkinton and
22		other towns are served from facilities that are projected to be overloaded. The existing
23		distribution system in the area is shown in Att. ATL-4. Operational response to system

1		contingencies will include actions up to and including load shed (customer service
2		interruptions) to prevent equipment damage and a wide area outage. This load shedding for
3		a contingency would affect customers in Hopkinton as well as Charlestown and Westerly.
4	Q.	What system operational problems could these thermal concerns result in?
5	A.	Loss of the largest Wood River transformer on peak could result in unserved customer load
6		of approximately 11 MVA in 2009 (growing to 20 MVA in 2015). Loss of either Westerly
7		transformer on peak could result in unserved customer load of approximately 5 MVA in
8		2009 (growing to 12 MVA in 2015).
9		In the event the contingencies described occur, the operational response would be to install a
10		mobile transformer to restore customer service. A conservative (not less than) estimate of
11		the time required to install a mobile transformer is 24 hours. Furthermore, available mobile
12		transformers do not have the same capabilities to regulate system voltage as the permanently
13		installed units at Wood River substation. As such, system voltage performance concerns
14		(which result in customer equipment operation problems) could remain even after customer
15		service is restored.
16	Q.	What solution did the Annual Capacity Plan identify for these problems?
17	A.	The Annual Capacity Plan identified a need for new supply and distribution capacity. The
18		Annual Plan recommended the installation of a new 115/12.47 kV substation and three
19		distribution feeders in Hopkinton, Rhode Island. The site selected is land owned by The
20		Narragansett Electric Company on Route 3 adjacent to an existing electric transmission line
21		and right of way.
22	Q.	Please explain the alternative that was considered.

1	A.	The alternative considered the reinforcement and expansion of the existing 34.5 kV supply
2		and 12.47 kV distribution system. It included the replacement of both Westerly
3		transformers; the replacement of the smaller Wood River Supply transformer; development
4		(capacity increases and reconfiguration) of the Westerly 16F4, 16F5 and 16F6 feeders; and
5		upgrades to the Wood River supply lines.
6	Q.	What is the conclusion of your analysis?
7	A.	The development of a new 115/12.47 kV substation on Route 3 in Hopkinton is the
8		recommended plan. The recommended plan is superior to the alternative plan because it
9		introduces new distribution capacity in a location where load is developing and where there
10		is ready access to the existing distribution and transmission systems. The recommended
11		plan provides much needed capacity to relieve heavily loaded distribution and supply
12		circuits and improves customer service reliability in Hopkinton. As an added benefit, the
13		recommended plan results in the retirement and removal of Ashaway substation. Ashaway
14		is a small single feeder substation built in 1972 and supplied off the 34.5 kV distribution
15		supply system. This substation is not suitable for expansion to address the Study Area
16		concerns identified in the Annual Capacity Plan and will eventually require replacement of
17		aged and outdated equipment. The condition of the substation's feeder circuit breaker was
18		recently reviewed and it has been recommended for replacement. In addition, the
19		conceptual estimated cost of the alternate plan exceeds twice that of the recommended plan.
20		The alternative plan would reinforce existing supply and distribution capacity to sufficiently
21		address existing and projected loading concerns. However, should significant, presently
22		unanticipated, spot loads develop along Route 3, it would be more difficult and costly to
23		serve this load without the proposed substation. The alternative plan only delays the need

1		for new supply and distribution capacity in the vicinity of the existing transmission right of
2		way in Hopkinton. The Company would have to return in the future with a new proposal to
3		serve load growth in and around this area.
4	Q.	Mr. LaBarre, how will the Hopkinton substation project solve these concerns?
5	A.	The installation of a new 115/12.47 kV substation and three distribution feeders will resolve
6		area transformer, feeder, and supply line overloads. New distribution feeders will support
7		the retirement of Ashaway substation, relief of Wood River and Westerly substations, relief
8		of the distribution supply system, and relief of area feeders. The reconfigured distribution
9		supply system following construction of the Hopkinton Substation is shown in Att. ATL-5.
10	Q.	What will these benefits mean for consumers?
11	A.	The benefits are a more reliable electric system that should experience fewer outages than
12		the existing system and one that will require significantly less time to restore when system
13		contingencies do occur. The introduction of a new 115 kV source will allow for the capacity
14		to support load growth and customer expansion in the Town of Hopkinton.
15	Q.	Does this complete your testimony?
16	А.	Yes, it does.

ATTACHMENTS

ATL-1	2009 Annual Plan Feeder Problem Identification Spreadsheet – South County West Study Area
ATL-2	2009 Annual Plan Transformer Problem Identification Spreadsheet – South County West Study Area
ATL-3	2009 Annual Plan Supply Line Problem Identification Spreadsheet – South County West Study Area
ATL-4	Existing Supply Areas & Distribution Feeders, Hopkinton, RI
ATL-5	Proposed Supply Areas & Distribution Feeders, Hopkinton, RI

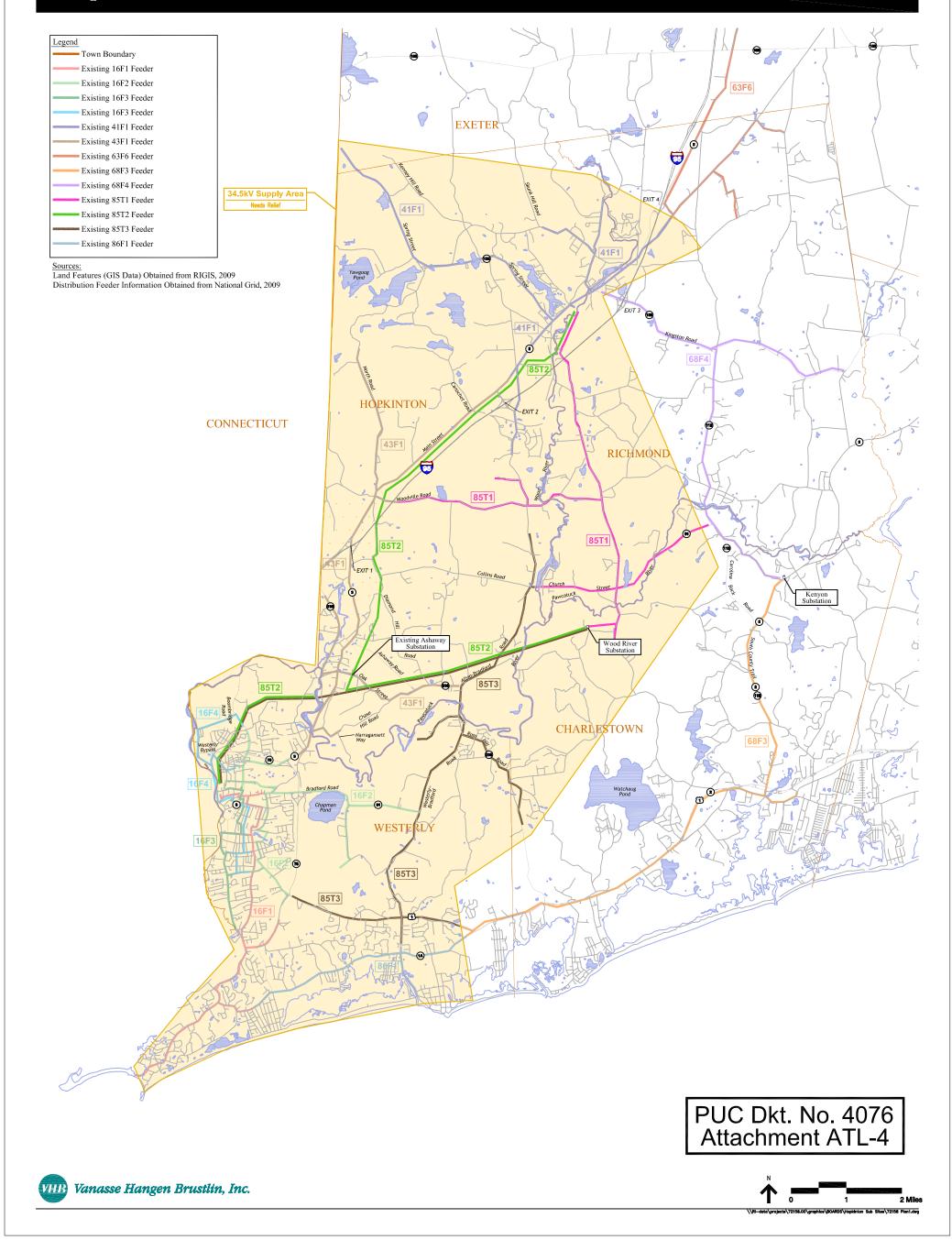
2009 Annual Plan Feeder Problem Identification Spreadsheet

South County West Study Area

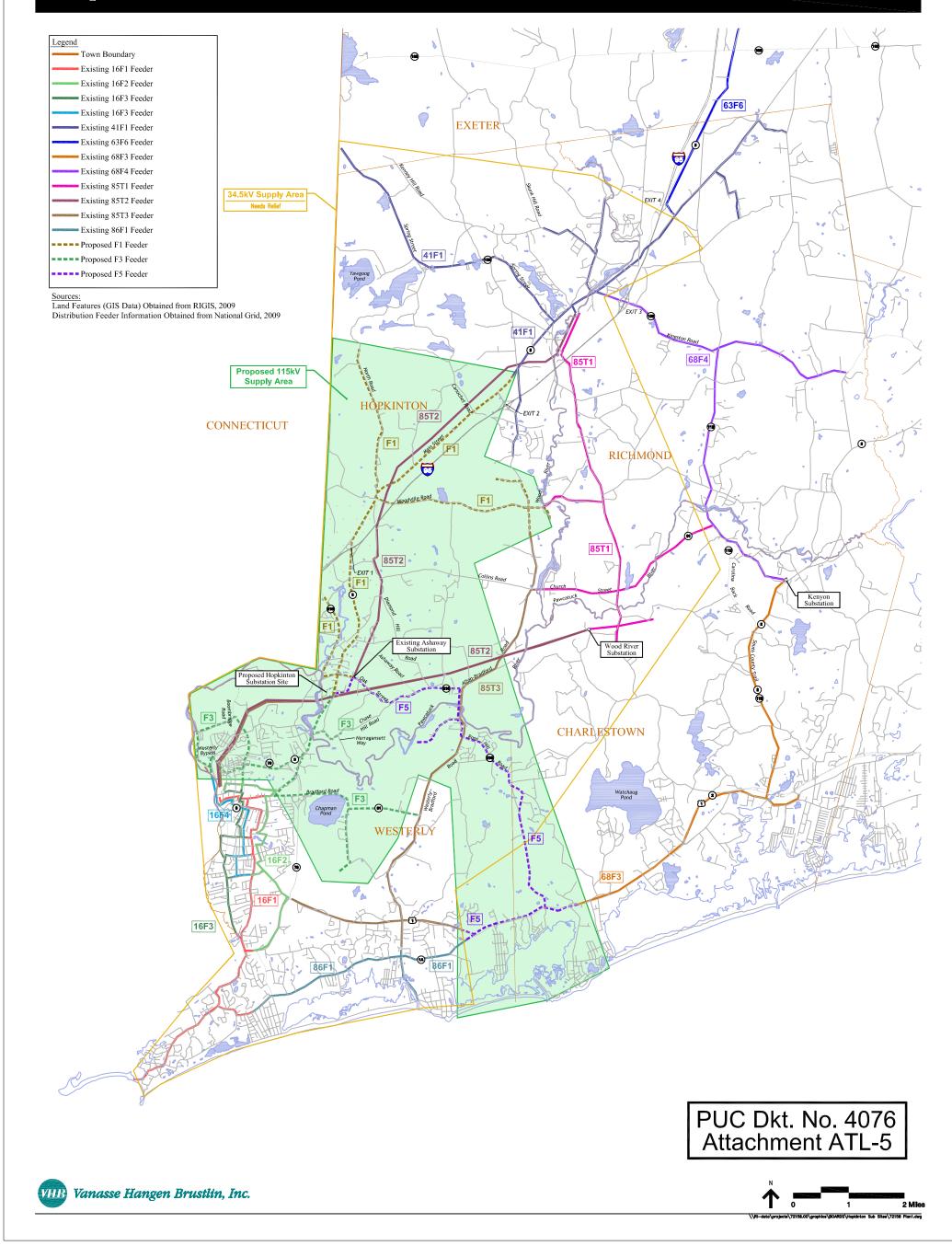
															Project	ed Load	d					
									20	09	20)10	20)11	20)12	20	013	20	014	20	015
Substation	Voltage (kV)	Feeder	Normal Limiting Element	Normal Element Specifics	SN Rating (Amps)	Emergency Limiting Element	Emergency Element Specifics	SE Rating (Amps)	Amps	% SN	Amps	% SN	Amps	%SN	Amps	%SN	Amps	%SN	Amps	%SN	Amps	s %SN
ASHAWAY 43	12.47	43F1	Transformer	5.0/6.25 MVA	388	Transformer	5.0/6.25 MVA	423	324	83%	333	86%	345	89%	359	93%	371	96%	381	98%	390	100%
HOPE VALLEY 41	12.47	41F1	Transformer	5.0 MVA	347	Transformer	5.0 MVA	430	253	73%	260	75%	270	78%	281	81%	290	84%	298	86%	305	88%
KENYON 68	12.47	68F1	UG Cable	1C 1000AI XLPE DB	512	Relay/Fuse	612 Amp Safe Carry	612	359	70%	369	72%	383	75%	398	78%	412	80%	422	82%	432	84%
KENYON 68	12.47	68F2	UG Cable	1C 1000AI XLPE DB	511	Relay/Fuse	612 Amp Safe Carry	612	370	72%	380	74%	394	77%	410	80%	424	83%	435	85%	445	87%
KENYON 68	12.47	68F3	UG Cable	1C 1000AI XLPE DB	512	OH Line	336.4 AI (TULIP) Bare	515	442	86%	454	89%	471	92%	490	96%	506	99%	519	101%	531	104%
KENYON 68	12.47	68F4	UG Cable	1C 1000AI XLPE DB	514	Relay/Fuse	612 Amp Safe Carry	612	264	51%	272	53%	282	55%	293	57%	303	59%	311	60%	318	62%
KENYON 68	12.47	68F5	Relay/Fuse	612 Amp Safe Carry	612	Relay/Fuse	612 Amp Safe Carry	612	286	47%	294	48%	305	50%	317	52%	327	54%	336	55%	344	56%
LANGWORTHY CORNER 86	12.47	86F1	Transformer	5.6/7 MVA	382	Transformer	5.6/7 MVA	429	308	81%	317	83%	328	86%	342	89%	353	92%	362	95%	371	97%
WESTERLY 16	12.47	16F1	OH Line	336.4 AI (TULIP) Bare	515	OH Line	336.4 AI (TULIP) Bare	515	478	93%	492	95%	510	99%	530	103%	548	106%	562	109%	575	112%
WESTERLY 16	12.47	16F2	OH Line	336.4 AI (TULIP) Bare	515	OH Line	336.4 AI (TULIP) Bare	515	467	91%	480	93%	498	97%	518	101%	535	104%	549	107%	562	109%
WESTERLY 16	12.47	16F3	OH Line	336.4 AI (TULIP) Bare	515	OH Line	336.4 AI (TULIP) Bare	515	385	75%	396	77%	411	80%	427	83%	441	86%	452	88%	463	90%
WESTERLY 16	12.47	16F4	OH Line	477 AI (COSMOS) Bare	645	OH Line	477 AI (COSMOS) Bare	645	262	41%	270	42%	280	43%	291	45%	300	47%	308	48%	316	49%

2009 Annual Plan Transfomer Problem Identification Spreadsheet

South County West Study Area


		System	n Voltage	Maximum	Ra	ting							Projec	ted Loa	d											Pro	jected	Conting	ency					
		(kV)	Waximum	(M	VA)	2009		2010		2011		2012		2	2013		2014		2015		009	2	010	2	011	2	012	2	013	20	014	2	015
Substation	Tranf. ID.	From	То	Nameplate Rating	SN	SE	MVA	% SN	MVA	% SN	MVA	% SN	MVA	% SN	MVA	% SN	MVA	% SN	MVA	% SN	MVA	% SE	MVA	% SE	MVA	% SE	MVA	% SE	MVA	% SE	MVA	% SE	MVA	% SE
ASHAWAY 43	1	34.5	12.47	6.3	8.4	9.1	7.0	83%	7.2	86%	7.5	89%	7.8	92%	8.0	95%	8.2	98%	8.4	100%	7.0	77%	7.2	79%	7.5	82%	7.8	85%	8.0	88%	8.2	90%	8.4	92%
HOPE VALLEY 41	1	34.5	12.47	5.0	7.3	9.3	5.5	75%	5.6	78%	5.8	80%	6.1	84%	6.3	86%	6.4	89%	6.6	91%	5.5	59%	5.6	61%	5.8	63%	6.1	65%	6.3	67%	6.4	69%	6.6	71%
KENYON 68	1	115	12.47	40.0	49.7	53.7	22.3	45%	22.9	46%	23.8	48%	24.7	50%	25.5	51%	26.2	53%	26.8	54%	35.6	66%	36.6	68%	37.9	71%	39.5	73%	40.8	76%	41.8	78%	42.8	80%
KENYON 68	2	115	12.47	40.0	49.7	53.7	13.3	27%	13.7	27%	14.2	29%	14.7	30%	15.2	31%	15.6	31%	16.0	32%	35.6	66%	36.6	68%	37.9	71%	39.5	73%	40.8	76%	41.8	78%	42.8	80%
LANGWORTHY 86	1	34.5	12.47	5.6	8.2	9.3	6.7	81%	6.8	83%	7.1	86%	7.4	90%	7.6	92%	7.8	95%	8.0	97%	6.7	72%	6.8	74%	7.1	77%	7.4	80%	7.6	82%	7.8	84%	8.0	86%
WESTERLY 16	2	34.5	12.47	20.0	25.6	26.7	18.1	71%	18.6	73%	19.3	75%	20.1	78%	20.7	81%	21.3	83%	21.8	85%	31.8	120%	32.7	123%	34.0	127%	35.3	132%	36.5	137%	37.4	140%	38.3	144%
WESTERLY 16	4	34.5	12.47	20.0	25.6	26.7	15.4	60%	15.9	62%	16.5	64%	17.1	67%	17.7	69%	18.1	71%	18.6	73%	31.8	120%	32.7	123%	34.0	127%	35.3	132%	36.5	137%	37.4	140%	38.3	144%
WOOD RIVER 85	10	115	34.5	40.0	48.2	52.4	39.0	81%	39.6	82%	40.5	84%	41.5	86%	42.3	88%	43.0	89%	43.6	91%	63.3	121%	64.6	123%	66.4	127%	68.4	130%	70.2	134%	71.6	136%	72.9	139%
WOOD RIVER 85	20	115	34.5	80.0	91.2	106.6	24.3	27%	25.0	27%	25.9	28%	27.0	30%	27.9	31%	28.6	31%	29.3	32%	63.3	59%	64.6	61%	66.4	62%	68.4	64%	70.2	66%	71.6	67%	72.9	68%

2009 Annual Plan Supply Line Problem Identification Spreadsheet


South County West Study Area

				Line Se	otion	Rating		Projected Load													Projected Contingency														
						(MVA)	20	09	20	10	20	2011 2012		12	2013		20	014	2015		20	09	20	10	20	11	201	12	20	13	20	14	20	15	
Circuit	Voltage (kV)	Limiting Element	Element Specifics	From	То	SN SE	MVA	%SN	MVA	%SN	MVA	%SN	MVA	%SN	MVA	%SN	MVA	%SN	MVA	%SN	MVA	% SE	MVA	% SE	MVA	% SE	MVA	% SE	MVA	% SE	MVA	% SE	MVA	% SE	Worst Contingency
85T1	34.5	Recloser	560A	Terminal Equipment		35.8 38.5	10.5	29%	10.6	30%	10.8	30%	11.1	31%	11.3	31%	11.4	32%	11.6	32%	30.1	78%	30.5	79%	30.9	80%	31.4	82%	31.8	83%	32.2	84%	32.5	84%	6 85T3 OOS
85T1	34.5	UG Cable	750 AI	Wood River	P174 Riser	30.7 43.9	10.5	34%	10.6	35%	10.8	35%	11.1	36%	11.3	37%	11.4	37%	11.6	38%	30.1	69%	30.5	69%	30.9	70%	31.4	72%	31.8	73%	32.2	73%	32.5	74%	6 85T3 OOS
85T1	34.5	OH Line	795 AI	P174 Riser	Hope Valley	53.2 53.2	10.5	20%	10.6	20%	10.8	20%	11.1	21%	11.3	21%	11.4	21%	11.6	22%	30.1	57%	30.5	57%	30.9	58%	31.4	59%	31.8	60%	32.2	60%	32.5	61%	6 85T3 OOS
85T1	34.5	OH Line	477 Al Spca	P174 Riser	Hope Valley	29.8 36.6	10.5	35%	10.6	36%	10.8	36%	11.1	37%	11.3	38%	11.4	38%	11.6	39%	30.1	82%	30.5	83%	30.9	84%	31.4	86%	31.8	87%	32.2	88%	32.5	89%	6 85T3 OOS
85T1	34.5	OH Line	336.4 Al	P174 Riser	Hope Valley	32.6 32.6	5.0	15%	5.0	15%	5.0	15%	5.0	15%	5.0	15%	5.0	15%	5.0	15%	5.0	15%	5.0	15%	5.0	15%	5.0	15%	5.0	15%	5.0	15%	5.0	15%	SN
85T2	34.5	Recloser	560A	Terminal Equipment		35.8 38.5	25.1	70%	25.8	72%	26.7	75%	27.8	78%	28.7	80%	29.5	82%	30.2	84%	39.3	102%	40.4	105%	41.9	109%	43.6	113%	45.0	117%	46.2	120%	47.3	123%	Westerly T4/85T3 OOS
85T2	34.5	UG Cable	2-1000 Cu	Wood River	PTR P070	53.0 76.0	25.1	47%	25.8	49%	26.7	50%	27.8	52%	28.7	54%	29.5	56%	30.2	57%	39.3	52%	40.4	53%	41.9	55%	43.6	57%	45.0	59%	46.2	61%	47.3	62%	Westerly T4/85T3 OOS
85T2	34.5	OH Line	795 AI	Wood River	PTR P070	53.2 53.2	25.1	47%	25.8	48%	26.7	50%	27.8	52%	28.7	54%	29.5	55%	30.2	57%	39.3	74%	40.4	76%	41.9	79%	43.6	82%	45.0	85%	46.2	87%	47.3	89%	Westerly T4/85T3 OOS
85T2	34.5	Recloser	800A - VSA	PTR P070		47.8 50.2	25.1	52%	25.8	54%	26.7	56%	27.8	58%	28.7	60%	29.5	62%	30.2	63%	33.5	67%	34.5	69%	35.7	71%	37.2	74%	38.4	76%	39.4	78%	40.3	80%	Westerly T4/85T3 OOS
85T2	34.5	OH Line	795 AI	PTR P070	Westerly	53.2 53.2	25.1	47%	25.8	48%	26.7	50%	27.8	52%	28.7	54%	29.5	55%	30.2	57%	33.5	63%	34.5	65%	35.7	67%	37.2	70%	38.4	72%	39.4	74%	40.3	76%	Westerly T4/85T3 OOS
85T3	34.5	Bus conductor	500 Cu	Terminal Equipment		53.9 58.3	34.9	65%	35.4	66%	36.2	67%	37.1	69%	37.9	70%	38.5	71%	39.1	73%	51.4	88%	52.4	90%	53.9	92%	55.5	95%	56.9	97%	58.0	99%	59.1	101%	Westerly T2/85T2 OOS
85T3	34.5	UG Cable	2-1000 Cu	Wood River	Langworthy Tap	53.0 76.0	34.9	66%	35.4	67%	36.2	68%	37.1	70%	37.9	72%	38.5	73%	39.1	74%	51.4	68%	52.4	69%	53.9	71%	55.5	73%	56.9	75%	58.0	76%	59.1	78%	Westerly T2/85T2 OOS
85T3	34.5	OH Line	795 AI	Wood River	Langworthy Tap	53.2 53.2	34.9	66%	35.4	67%	36.2	68%	37.1	70%	37.9	71%	38.5	72%	39.1	74%	51.4	97%	52.4	99%	53.9	101%	55.5	104%	56.9	107%	58.0	109%	59.1	111%	Westerly T2/85T2 OOS
85T3	34.5	OH Line	477 AI	Langworthy Tap	PTR P137-50	38.5 38.5	21.3	55%	21.4	56%	21.7	56%	22.0	57%	22.2	58%	22.4	58%	22.6	59%	21.3	55%	21.4	56%	21.7	56%	22.0	57%	22.2	58%	22.4	58%	22.6	59%	SN
85T3	34.5	Recloser	RVE Recloser	PTR P137-50		23.9 23.9	21.3	89%	21.4	90%	21.7	91%	22.0	92%	22.2	93%	22.4	94%	22.6	95%	21.3	89%	21.4	90%	21.7	91%	22.0	92%	22.2	93%	22.4	94%	22.6	95%	SN
85T3	34.5	OH Line	477 AI	PTR P137-50	PTR P17	38.5 38.5	21.3	55%	21.4	56%	21.7	56%	22.0	57%	22.2	58%	22.4	58%	22.6	59%	21.3	55%	21.4	56%	21.7	56%	22.0	57%	22.2	58%	22.4	58%	22.6	59%	SN
85T3	34.5	Recloser	RVE Recloser	PTR P17		23.9 23.9	6.7	28%	6.8	29%	7.1	30%	7.4	31%	7.6	32%	7.8	33%	8.0	33%	6.7	28%	6.8	29%	7.1	30%	7.4	31%	7.6	32%	7.8	33%	8.0	33%	SN
85T3	34.5	OH Line	477 AI	PTR P17	Langworthy Sub	38.5 38.5	6.7	17%	6.8	18%	7.1	18%	7.4	19%	7.6	20%	7.8	20%	8.0	21%	6.7	17%	6.8	18%	7.1	18%	7.4	19%	7.6	20%	7.8	20%	8.0	21%	SN
85T3	34.5	OH Line	795 AI	Langworthy Tap	PTR P136	53.2 53.2	15.4	29%	15.9	30%	16.5	31%	17.1	32%	17.7	33%	18.1	34%	18.6	35%	32.5	61%	33.4	63%	34.7	65%	36.1	68%	37.2	70%	38.2	72%	39.1	74%	Westerly T2/85T2 OOS
85T3	34.5	Recloser	800A - VSA	PTR P136		47.8 50.2	15.4	32%	15.9	33%	16.5	34%	17.1	36%	17.7	37%	18.1	38%	18.6	39%	32.5	65%	33.4	67%	34.7	69%	36.1	72%	37.2	74%	38.2	76%	39.1	78%	Westerly T2/85T2 OOS
85T3	34.5	O/H Line	795 AI	PTR P136	Westerly Sub	53.2 53.2	15.4	29%	15.9	30%	16.5	31%	17.1	32%	17.7	33%	18.1	34%	18.6	35%	32.5	61%	33.4	63%	34.7	65%	36.1	68%	37.2	70%	38.2	72%	39.1	74%	Westerly T2/85T2 OOS

Existing Supply Areas & Distribution Feeders Hopkinton, Rhode Island

Proposed Supply Areas & Distribution Feeders Hopkinton, Rhode Island

