

Response to Technical Review Comments

Volume 1 of 2

Clear River Energy Center and Burrillville Interconnection Project

Burrillville, Rhode Island

PREPARED FOR:

Clear River Energy LLC One South Wacker Drive Suite 1800 Chicago, IL 60606

The Narraganset Electric Company d/b/a National Grid 280 Melrose Street Providence, Rhode Island 02907

PREPARED BY:

ESS Group, Inc. 10 Hemingway Drive, 2nd Floor East Providence, Rhode Island 02915

ESS Project No. I108-013

September 2017

MASSACHUSETTS 100 Fifth Avenue, 5th Floor Waltham, Massachusetts 02451 p +1 781.419.7696

RHODE ISLAND 10 Hemingway Drive, 2nd Floor East Providence, Rhode Island 02915 p +1 401.434.5560 VIRGINIA 999 Waterside Drive, Suite 2525 Norfolk, Virginia 23510 p +1 757.777.3777

September 18, 2017

Chuck Horbert, Program Supervisor RIDEM Office of Water Resources Freshwater Wetlands Program 235 Promenade Street Providence, RI 02908

Re: Clear River Energy Center, LLC Burrillville RI Application No. 17-0079

Dear Chuck,

Please find the enclosed responses to the biologist and engineer review comments provided on June 19, 2017. As previously discussed, the applicants delayed this response, in order to incorporate the results of additional wetland edge verification efforts recently completed by RIDEM staff. As requested, we have attached three hard copies of the responses and associated exhibits. Please let us know if you have additional questions.

Sincerely,

ESS GROUP, INC.

Craig A. Wood Principal Scientist

Attachments: Response to Comments

C: Bryan Schueler, Clear River Energy, LLC

RHODE ISLAND DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF WATER RESOURCES FRESHWATER WETLANDS PROGRAM

Technical Review Comments of Documents Received by RI DEM on April 4, 2017

APPLICANT: Algonquin Gas Transmission, LLC (c/o Clear River Energy,

LLC) APPLICATION NO: 17-0079

BIOLOGIST REVIEW COMMENTS (Nancy Freeman 401-222-6820, extension 7408):

Initial site and file review reveals that the Program was not provided with sufficiently detailed site plans or adequate site work to conduct our review. Accordingly, a full review of all submitted materials and all areas of the site has been suspended pending submittal of revised materials and completion of additional site workas detailed herein. The following comments should therefore not be misconstrued to be the entirety of all initial comments, since it is anticipated that additional comments will be generated upon receipt and review of the necessary plan revisions and site work. Please address the following items to be addressed in order tocontinue our review:

1. The site plans submitted for the CREC portion of the project do not depict individual wetland flags. The wetland edge is shown only as a solid line. Individual wetlands flags must be depicted on revised site plans in their entirety. Furthermore the Department only verified portions of the wetland edges requested under Application No. 15-0239. There are large areas proposed for work (e.g. the temporary spoil and laydown/stockpile area and the CREC) that were not previously inspected or verified under the wetland verification letter. For Applications to Alter, all adjacent wetland flags must be verified. Therefore, wetland flags previously delineated near and within the LOD must be refreshed with numbers legible and all additional wetland edges near the project limits (i.e. those not previously reviewed) must be flagged and depicted on revised site plans. The Special Aquatic Sites have been flagged on-site, but their respective flag locations and numbers have not been depicted on the site plans. Any additional new areas of wetland discovered must also be flagged and depicted.

Response: Subsequent to the review comments received on April 4th, Chuck Horbert (Program Supervisor, RIDEM Office of Water Resources, Freshwater Wetlands Program) provided an email (Exhibit 5, dated September 5, 2017) which summarized a review of a more recent wetland edge plans developed in response to comments 2 through 5 below.

ESS has refreshed and/or revised all wetland flags near and within the project LOD to satisfy comments within this letter as well as those discussed in the email from September 5th. Numbered wetland flags (including flags delineating Special Aquatic Sites) have been added to the revised site plans (see Exhibit 1, sheets 01C100 through 01C107, 01C300 through 01C307, 01C700 through 01C703, 01C901 through 01C904, and 01C906 through 01C921).

2. Site inspection revealed that the LOD has been flagged along with the road centerline and drainage features. The LOD flags are numbered; however, no corresponding plan showing the LOD numberswas provided and adjacent wetland flags are missing and/or not legible. Due to size of the property and the density of vegetation, walking is prohibitive and sight lines are limited. If feasible, pleaseprovide a separate sheet showing the LOD flag locations and corresponding

numbers (i.e. not aspart of the overall site plan set), which would greatly facilitate our review. While it is likely not feasible or necessary to stake out and label all project components (edge of roads, parking areas, tanks, buildings, etc.), there is a lack of good fixed reference points within the interior of the main development; please therefore at least place and label a stake marking the location of each catchbasin, labeling it with the corresponding identifier number provided on the site plans. Catch basins within close proximity to the LOD stakes do not need to be so marked.

Response: ESS provided a revised wetland field map with the information requested above under a separate cover. This mapping was the subject of comments received in the email dated September 5th. The revised site plans (see Exhibit 1) include all revised wetland flags near and within the project LOD.

3. While following the LOD for the temporary spoil area, additional wetlands were observed along and near the LOD flags. The stream east of the LOD falls within a distinct valley with associated wetland, which was flagged and verified. However, just west and upslope of the flagged edge, there are some areas along the LOD where the topography dips back down and the presences of sphagnum moss patches were noted. There are small wet pockets throughout portions of the upland that are, isolated, too small to delineate and that do not meet the definition of a regulated freshwater wetland. However, some of these small wet areas are forested wetlands and some appear to be connected toportions of swamp that were not verified. Because adjacent wetland flags were mostly no longerpresent, the only references a r e the LOD flags. Please have your wetland consultants (not just thesurveyor) revisit the area at least along and near the LOD north/northwest of the proposed 13P Detention Basin and along the far northwestern comer of the temporary stockpile area and along the western edge back to the woods path. A wetland Flag 57-d was observed close to the LOD in the far comer and it appears that perimeter wetland and swamp might extend into the LOD in this general area. Following the LOD flag southerly back towards the woods path (the LOD flag pathwas lost in a dense stand of mountain laurel), pockets of sphagnum moss were observed and it appears that unverified portions of swamp might extent into portions of the LOD here as well. SomeLOD flags where wetland was noted nearby include at least: 6239, 6249, 6253, 6254 and near Flag 133. Please flag any additional wetlands located, depict them on revised site plans and revise the LOD accordingly.

Response: ESS has revised the wetland delineation in the proximity of the staging area consistent with these comments as well as those included in the email dated September 5th. This revised wetland boundary is reflected in the revised plan set (see Exhibit 1).

4. An area subject to storm flowage (ASSF) was observed extending from the southern terminus of the Special Aquatic Site (SAS) east of proposed 4P Detention Pond into the swamp proper. Please flag and depict on revised site plans any additional wetland.

Response: This ASSF has been flagged in the field and the flags have been added to the revised site plans (see Exhibit 1, sheets 01C102, 01C106, 01C302, 01C306, 01C702, 01C903, 01C908, 01C912, 01C916, 01C920).

5. A SAS within an old graveled area is present that appears to be just south of the LOD, south of the 3P gravel wetland and should be identified on the plans due to its proximity.

Response: This SAS (identified as SAS3) has been flagged in the field and the flags have been added to the revised site plans (see Exhibit 1, sheets 01C102, 01C106, 01C302, 01C306, 01C702, 01C903, 01C908, 01C912, 01C916, 01C920).

6. All wetlands should be labeled properly on revised site plans (e.g. swamp, not Biological Wetland 1).

Response: Wetlands have been re-labelled on the revised site plans as either swamp or forested wetland (see Exhibit 1, sheets 01C100 through 01C107, 01C300 through 01C307, 01C700 through

01C703, 01C901 through 01C904, and 01C906 through 01C921).

7. All site plans sheets provided in the set related to the CREC portion of the project appear to be reduced-sized plan sheets. Most, for example, are labeled as 1"=50'; however, the actual scale appears to be 1 "=100', and in fact may be slightly off this since the reduction was not exactly 50%. Please revise the site plans to provide a correct scale or provide full-sized site plans rather than reduced-sized site plans.

Response: The revised site plans have the correct scale at 11" x 17" prints. Full-sized plan sheets can be provided if necessary.

8. Please incorporate Figure 6-1 (roadway cross section) from the narrative into the site plan set details, and clearly indicate the roadway stations applicable to the cross sections. Note it appears that most slopes adjacent to the road (other than access ramps) are steeper than the 3:1 slope specified in the detail. Please clarify/correct.

Response: Figure 6-1 was included in the permit narrative illustrate compliance with wetland avoidance and minimization requirements. The roadway from Wallum Lake Road into the Facility has been designed to avoid and minimize wetland impacts to the maximum extent practicable. Instead of typical 3:1 embankment slopes, the roadway will be constructed with retaining walls that will considerably reduce its overall width and impact to Wetland 1. The graphic is not intended for design purposes and consequently was not included in the plan set.

9. The only site plans showing details of the various components of the proposed CREC development are 01C002 (Overall Site Arrangement), 01C003 (Overall General Arrangement), 01C400 (Proposed Drainage Plan, which does not show all components) and at a very general level of detail on the sheets O1C918 through 01C921 (SESC Plan Phase TV, which will be removed). All components must be depicted and labeled on a site plan at a useful scale for review within the plan set, ideally on either the Grading Plans or on the Drainage and Water Quality plans.

Response: Drawings 01C200 through 01C203 (Proposed Site Layout) show the drainage components and references where the detail for each can be found on the 01C800 through 01C805 (Details) drawings.

10. The only site plan sheet showing the entirety of the connection of the project to the existing gas line is Sheet O IC002, "Overall Site Arrangement", which is not at a suitable scale or level of detail. Please incorporate all details and associated limits of disturbance at a scale of no smaller than 1"=100' depicting the connection of the proposed gas supply line to the existing supply lines. Specify whether this is an above-ground or underground supply line.

Response: Drawing 01C200 shows the extent of the gas pipeline for which Invenergy is responsible. Spectra Energy will be designing the portion of the pipeline that leaves Invenergy property and connects with the larger Spectra Energy system.

11. Note that the wetland limits depicted on Sheets O1 C002 and O1C003 do not correspond with limits depicted on the rest of the plans and may in fact be an earlier, unverified limit of wetlands. Of greatest relevance and concern is that this older version of the wetland edge is the same wetland edge depicted on the site plans provided to DEM's OWTS Program. The corrected wetland edges that are depicted throughout the rest of the plan set indicate that the proposed OWTS system is located within freshwater wetland limits. The OWTS system will likely therefore need to

be relocated and other relevant components of the project revised to accommodate the changes. All discrepancies between the depicted wetland edges and limits must be corrected.

Response: The OWTS has been relocated.

12. The Abutters Maps show project impact area, but the wetland is not identified on the various sheets. There is therefore no way to confirm if the maps are correct. Please clearly depict all wetland limits on the 200-foot radius maps and identify the wetlands similarly to how they are identified on the plan set.

Response: The abutters maps have been revised to depict all wetlands, and depicted wetlands have been labelled in a similar manner to the plan set (see Exhibit 2).

13. The BIP plan key sheet (Sheet 6 of 63) does not correspond with the actual site plan sheet numbers and should be revised to do so.

Response: TNEC has revised the plan key sheet accordingly (see Exhibit 1).

14. The "Existing Drainage Conditions" plans (01C104 through 01C107) are duplicative and can be removed from the plan set. All SESC-related site plans (01C900 through 01C925) should be removed from the plan set and incorporated into the corresponding SESC Plan document. **Please note** all plan sheets need to be numbered consecutively as sheet 1 of x, 2 of x etc. where x = the totalnumber of sheets in the plan set. Please number accordingly.

Response: Drawings 01C104 through 01C107 have been removed from the plans. Drawings 01C900 through 01C925 have been removed and are now included in the SESC Plan document. The remaining drawings have retained the original drawing number sequence so the drawings can be separated or easily referenced by discipline or subject matter. Please refer to page 01C000 drawing index that illustrates the drawing package layout.

15. Please do not provide any reports or site plans bound in three-ring binders. Most other methods of binding are acceptable.

Response: So noted.

ENGINEER REVIEW COMMENTS: (Nicholas A. Pisani, PE 401-222-6820, extension 7423):

(1) Please provide a RI professional engineer's stamp on the submitted stormwater analysis.

Response: The stormwater calculations are now sealed by a RI professional engineer on the cover sheet (see Exhibit 3).

(2) Please provide existing and proposed condition node diagrams (depicting all Subcatchment areas, ponds, reaches and links that are identified in the submitted hydrologic and hydraulic analysis.

Response: A node map has been added to the existing conditions and proposed conditions calculation sets. Scaled drawing maps (with nodes) have also been added to the calculations. Revised calculation sets are enclosed with this response (see Exhibit 3).

(3) Please provide existing and proposed condition subwatershed maps that are prepared in accordance with the guidance found in the Appendices of the <u>Rhode Island Stormwater Design</u>

and Installation Standards Manual (RISDISM). Provide a scale of 1"=100' or greater detail. Also be sure to clearly label all proposed stormwater practice labels that correspond to the submitted hydrologic and hydraulic analysis. Please note that the submitted "proposed drainage and Water Quality Plan" drawings do not appear to adequately label all drainage features. Also, several of the indicated Subcatchment areas extend beyond the page. Please include the complete boundaries of all pertinent Subcatchment areas, even if it requires using a smaller scale for portions of Subcatchment areas that extend off of the subject site. These plans should be separate from the primary plan set.

Response: As mentioned in the response to Item 2 above, scaled drawing maps (with nodes) have been added to the calculation sets. A 1'' = 600' scale was used to show the offsite drainage and a 1'' = 100' scale was used to show the drainage on the site (see Exhibit 3).

(4) Please refer to the proposed gravel wet vegetated treatment system as such. Please remove all references to "gravel wetland" from this submittal.

Response: References to gravel wetland have been removed from the Drainage Report and revised site plans.

(5) Please provide overall key drawings to assist with review of all drawings with match lines.

Response: The rived site plans have been modified to include a small drawing index to the lower left corner of the plans.

(6) Please recheck the submitted calculation of the channel protection volume release rate and revise the analysis and design as necessary. From a review of the submitted materials the I-year total runoff volume from proposed condition Subcatchment 1S is 3.397 acre feet or 147,973 cubic feet (cf). The required channel protection volume is 0.65 times this value, or 96,183 cf. Dividing by24 x 60 x 60 yields a value of 1.11 cubic feet per second (cfs) for the average channel protection volume release rate. To obtain the maximum channel protection volume release rate multiplythis value by two to obtain 2.22 cfs. Please note that the maximum computed release rate provided is 2.57 cfs, which is slightly greater than the 2.22 cfs value. Please address if the 2.22 cfs value can be provided; otherwise please provide a technical justification that the 2.57 value will not be detrimental, and demonstrate that the design meets the standard to the "maximum extent practicable".

Response: The control structure has been modified and the calculations revised. The maximum channel protection volume release rate is now 2.16 cfs (see Exhibit 3).

(7) Please note the requirement to provide a 3' vertical separation to the seasonal high groundwater table (SHGWT) from the top of dry swale (the top of the bioretention soil layer, which is at thebottom of the channel formed by the dry swale), as per RISDISM standard 5.7.1 bullet 2. Pleaseprovide an adequate number of soils tests so as to determine the elevation profile of the seasonal high water table along the length of the proposed series of dry swales. Please also provide soilstests that will demonstrate an infiltration rate along the length of the proposed series of dryswales. Along with these items, please provide a completed Table 5-3 of the Appendix A checklist (which was left blank in the submittal).

Response: The upper swale (from the creek to the site) has the 3 foot separation from the SWGWT but has an infiltration rate less than the 0.5 in/hr rate required in the regulations (TP-5). The lower swale (from the creek to Wallum Lake Road) does meet the required minimum infiltration rate, (see TP-3) but not the 3-foot SWGWT separation. Therefore, the swales are now

lined (see Exhibit 1). The detail is shown on Sheet 01C804 detail 5.

(8) Please provide an adequate number of soils tests (see the pertinent RISDISM minimum standards) at each of the proposed detention ponds and the proposed wet vegetated treatment system (WVTS). Please note that if the bottom of any of these practices is below the elevation of the seasonal high groundwater table, then the impacted practices will need to be lined with an impervious liner and protected from impacts of buoyancy.

Response: Based on the Geotechnical Report, the SHGWT is at depth 4 inches to 22 inches below the ground surface. A conservative approach was used that assumed the groundwater was at the surface and therefore the WVTS and both detention ponds are lined and have a subdrain system included under the liner to prevent buoyancy (see Exhibit 1). See Sheet 01C101 and 01C102 for details.

(9) Please provide calculations that will demonstrate that the proposed series of dry swales will infiltrate the required recharge volume being discharged from the proposed contributing roadway areas.

Response: Please see the response to Item (7) above, it is impractical to do any infiltration on site.

(10) Please provide specifications for the indicated "filter fabric" proposed around the proposed dry swale. Please indicate the permeability of this fabric.

Response: The permeability has been added to the label on the drawings (95 g/min/sf) (see Exhibit 1). Please see Sheet 01C802 for details.

(11) If the proposed dry swales are to provide recharge, please explain the purpose of the proposed underdrain. Please address the impact of the proposed underdrain on recharge.

Response: The dry swales are no longer providing recharge (see response to Item (7) above).

(12) With respect to the outlet control structure of proposed Detention Pond I, please revise the submitted analysis so as to include the weir formed by the top of the outlet control structure situated at elevation 567.0'.

Response: The attached calculations have been revised to include the weir (see Exhibit 3).

(13) With respect to proposed Detention Pond l, please describe what the secondary outlet (#4) refers to as depicted on the submitted plans.

Response: This is an emergency overflow and is now labeled as such on Detail 1 on Drawing 01C800 (see Exhibit 1).

(14) The details of the proposed drainage diversion into proposed Detention Pond 2 is unclear. Please provide adequate details on the plans and in the submitted analysis. Please clearly indicate how runoff will enter this detention basin.

Response: Detail 1 on Drawing 01C805 has been revised and Detail 6 on Drawing 01C805 have been added to better show this diversion (see Exhibit 1). The calculation sets were also updated to show these revisions (see Exhibit 3).

(15) With respect to proposed Detention Pond 2 (Pond 13P) please indicate the 539.5' rim elevation (which is indicated in the submitted analysis) on the detail sheet for this device (Sheet 01C804).

Response: Rim elevation is now shown on Detail 3 Drawing 01C804 (Control Structure Detail – 13P) (see Exhibit 1).

(16) Please complete the water body ID number for Iron Mine Brook on page A-2 of the Appendix A checklist. Please also indicate the cold water / warm water / unassessed status.

Response: Appendix A has been revised as requested and is attached (see Exhibit 4).

(17) Please complete the "First Receiving Water ID or MS4" column of the Subwatershed Summary on page A-17 of the submitted Appendix A checklist.

Response: Appendix A has been revised as requested and is attached (see Exhibit 4).

(18) With respect to the submitted Burrillville Interconnection Project plan set, please revise the proposed perimeter erosion controls to omit staked hay bales. The latest <u>Rhode Island Soil</u> <u>Erosion and Sedimentation Control Handbook (RISESCH)</u> does not consider staked hay bales to be an effective perimeter control practice.

Response: TNEC has revised the Burrillville Interconnection Project plan set to remove reference to staked hay bales. In accordance with National Grid's Environmental Guidance Document EG-303, Access, Maintenance and Construction Best Management Practices, TNEC would still like to reserve the option to use staked straw bales, as a construction-phase best management practice (BMP). TNEC can commit to including a requirement for the contractor to use straw bales or wattles (not hay), in addition to other BMPs approved under the RISESCH and National Grid's EG-303.

(19) On page A-3 of the submitted Appendix A checklist, the submittal indicates that "restriction or modifications are proposed to the flow path or velocities in a floodway". Please explain and provide pertinent analysis of any such impact associated with this alteration of floodway.

Response: The "restriction or modification" noted in Appendix A checklist has been removed from the application.

(20) Please provide complete cut vs. fill calculations to demonstrate that impacts to areas of 100-year floodplain will be mitigated.

Response: Cut and fill calculations are now included with the floodplain calculations at the end of Exhibit 3.

(21) With respect to the submitted section addressing floodplain impacts, please provide all pertinent supporting floodplain analysis materials, including all calculation developing the flow values for the watercourse studied.

Response: Floodplain calculations are included at the end of Exhibit 3.

CONCLUDING COMMENTS:

1. Please submit three (3) sets of revised site plans.

Response: Three sets have been provided.

2. In order to facilitate the review of future revisions to your project, please provide written responses indicating how each of the above items was addressed.

Response: This document provides written responses to how each of the above items was addressed.

3. If you have any questions regarding this letter or the processing of your application, or with respect to any of the above-noted biological review comments, please contact Nancy Freeman at 401-222-6820, extension 7408.

Response: So noted.

4. If you have any questions with respect to the above engineering review comments, please contact Nicholas A. Pisani, PE at 401-222-6820, extension 7423.

Response: So noted.

List of Exhibits:

Exhibit 1: Revised site plans Exhibit 2: Abutters maps Exhibit 3: Drainage Report Exhibit 4: Appendix A: Stormwater Management Checklist and LID Planning Report Exhibit 5: Email from Chuck Horbert (Program Supervisor, RIDEM Office of Water Resources, Freshwater Wetlands Program) dated September 5, 2017

Exhibit 1 Revised Site Plans

Exhibit 2 Abutters Maps

CLEAR RIVER ENERGY CENTER AND BURRILLVILLE INTERCONNECTION PROJECT LIST OF ABUTTERS							
PARCEL ID	Owner	LOCATION	MAILING ADDRESS LINE 1	MAILING ADDRESS LINE 2	CITY	STATE	ZIP
007-002	BREAU GARY C & ROSE M	1661 SHERMAN FARM RD	1661 SHERMAN FARM RD		HARRISVILLE	RI	02830
021-005	ALLES DEBRA	0 ROUND TOP RD	98 WEST SHORE LANE		PASCOAG	RI	02859
021-010	TASCHEREAU STEVEN R & LISA G	1600 ROUND TOP RD	1600 ROUND TOP ROAD		HARRISVILLE	RI	02830
021-013	HUSSAIN CHAUDRY	1524 ROUND TOP RD	1524 ROUND TOP RD		HARRISVILLE	RI	02830
021-016	FARLEY WILFRED J III ET UX	1535 ROUND TOP RD	1535 ROUND TOP ROAD	P O BOX 454	HARRISVILLE	RI	02830
022-001	SAVAGE JAMES P & CHARLENE E	310 COLLINS TAFT RD	310 COLLINS TAFT RD		HARRISVILLE	RI	02830
022-004	FRENETTE KEVIN M & TAMMY A	375 COLLINS TAFT RD	375 COLLINS TAFT RD		HARRISVILLE	RI	02830
022-006	SHUGRUE ROBERT C & RENAY M	315 COLLINS TAFT RD	315 COLLINS TAFT RD		HARRISVILLE	RI	02830
022-007	CHRISTENSEN DAVID W & MARGARET WILSON	275 COLLINS TAFT RD	275 COLLINS TAFT RD		HARRISVILLE	RI	02830
034-057	FIELDING JAMES M & FATEMEH H	0 EAST WALLUM LAKE RD	65 HATFIELD ST		PAWTUCKET	RI	02861
037-004	CHILD JOHN W ET AL	0 HILL RD	130 BAYWOOD ROAD	PO BOX 721	NORTH EASTHAM	MA	02651-0721
038-002	ALLES STEWART F & DEBRA L	0 ROUND TOP RD	98 WEST SHORE RD		PASCOAG	RI	02859
038-006	FARLEY ALICE E	1443 ROUND TOP RD	1443 ROUND TOP ROAD		HARRISVILLE	RI	02830
039-001	STATE OF RHODE ISLAND	1265 ROUND TOP RD	STATE PROPERTY COMM	1 CAPITOL HILL PLAZA	PROVIDENCE	RI	02908
040-001	WALLUM LAKE ROD & GUN CLUB	0 BROOK RD	200 BROOK ROAD		HARRISVILLE	RI	02830
040-004	WALLUM LAKE ROD & GUN CLUB	200 BROOK RD	200 BROOK RD		HARRISVILLE	RI	02830
040-005	WALLUM LAKE ROD & GUN CLUB	0 SHERMAN FARM RD	ATTN: TREASURER	200 BROOK ROAD	HARRISVILLE	RI	02830
054-009	LAWTON IRENE R ESTATE OF	1525 HILL RD	1525 HILL ROAD		PASCOAG	RI	02859
054-011	CRABBE ROBERT C TRUSTEE	0 STONE BARN RD	185 STONE BARN ROAD	P O BOX 1	PASCOAG	RI	02859
055-011	FERRY BRENDA LYNN	50 ANNE LN	50 ANNE LANE		PASCOAG	RI	02859
070-020	MURPHY MARK & LISA M TE	595 TOWN FARM RD	595 TOWN FARM ROAD		PASCOAG	RI	02859
071-003	VALENTI ROBERT A JR & ROBERT A SR	1365 HILL RD	1365 HILL RD		PASCOAG	RI	02859
071-012	HOULE PETER JR & SANDRA L	1324 HILL RD	1324 HILL ROAD		PASCOAG	RI	02859
071-014	SWART JOHN F III & BEAUCHAMP LUCILLE	0 HILL RD	2530 DONNS WAY		OAKTON	VA	22124
071-017	EXCEL MANAGEMENT INC	0 TOWN FARM RD	9 OLD JENCKES HILL ROAD		LINCOLN	RI	02865
072-030	CRESTWOOD ESTATES HOMEOWNERS ASSOC	0 ANNE LN	25 ANNE LANE		PASCOAG	RI	02859
087-004	HOPKINS ALLAN E & JOAN TRUSTEES	1166 EAST WALLUM LAKE RD	PO BOX 202		PASCOAG	RI	02859
087-005	HOPKINS ALLAN E & JOAN TRUSTEES	1166 EAST WALLUM LAKE RD	PO BOX 202		PASCOAG	RI	02859
087-006	JENSEN ROBERT	0 EAST WALLUM LAKE RD	9 OLD JENCKES HILL RD		LINCOLN	RI	02865
101-018	AYOTTE ARTHUR R	0 BUCK HILL RD	508 BUCK HILL RD		PASCOAG	RI	02859
102-002	RAMBONE JACQUELINE	1485 WALLUM LAKE RD	1485 WALLUM LAKE ROAD		PASCOAG	RI	02859-1830
102-003	LAMBERT ROLAND A & CAROL A	1455 WALLUM LAKE RD	1455 WALLUM LAKE RD		PASCOAG	RI	02859
102-006	BERTRAND THEODORE R & LINDA A TE	1335 WALLUM LAKE RD	1335 WALLUM LAKE		PASCOAG	RI	02859
102-011	NAULT JASON O & CHRISTINE A	1504 WALLUM LAKE RD	1504 WALLUM LAKE RD		PASCOAG	RI	02859
102-012	SILVA FRANK G III & KELLY A	1478 WALLUM LAKE RD	P O BOX 42		PASCOAG	RI	02859
102-013	SONIER JULIE A	25 BUCK HILL RD	25 BUCK HILL ROAD		PASCOAG	RI	02859
102-014	NEYMAN MONICA A	35 BUCK HILL RD	35 BUCK HILL RD		PASCOAG	RI	02859
102-015	MULCAHY SUSAN M & MICHAEL F TE	63 BUCK HILL RD	63 BUCK HILL RD		PASCOAG	RI	02859
102-016	LETOILE RENE & RACHEL TE	105 BUCK HILL RD	105 BUCK HILL RD		PASCOAG	RI	02859
102-017	SMITH DAVID L & JOANNE M TE	135 BUCK HILL RD	135 BUCK HILL RD		PASCOAG	RI	02859
102-019	LEPORE JOSEPH J & DEBRA A	64 BUCK HILL RD	64 BUCK HILL ROAD		PASCOAG	RI	02859
102-021	BONOYER CHRISTINE M	140 BUCK HILL RD	140 BUCK HILL ROAD		PASCOAG	RI	02859
103-001	BURRILLVILLE LAND TRUST	0 WALLUM LAKE RD	PO BOX 506		HARRISVILLE	RI	02830
103-002	LAMBERT ROLAND A & CAROL & KEITH M	0 EAST WALLUM LAKE RD	1455 WALLUM LAKE ROAD		PASCOAG	RI	02859
104-001	JALBERT MARY M TRUST	986 EAST WALLUM LAKE RD	986 EAST WALLUM LAKE RD		PASCOAG	RI	02859
118-002	AYOTTE ARTHUR R	508 BUCK HILL RD	508 BUCK HILL RD		PASCOAG	RI	02859
137-006	HARRIS DAVID B	200 MANLY DR	200 MANLY DR		PASCOAG	RI	02859
137-008	BOLDUC PAUL R & MARY L L/E	915 WALLUM LAKE RD	915 WALLUM LAKE RD		PASCOAG	RI	02859
137-009	SHALOU BETTY L L/E	935 WALLUM LAKE RD	935 WALLUM LAKE RD		PASCOAG	RI	02859
137-010	WALKER LYLE	945 WALLUM LAKE RD	945 WALLUM LAKE RD		PASCOAG	RI	02859

0 600 1,200 2,400

Burrillville, RI

1 inch = 2,383 feet

Source: 1) ESRI, World Imagery, 2017 2) Town of Burrillville RI, Parcel Data, 2017

Legend

Abutter's Parcel (BIP)

Abutter's Parcel (CREC)

Index - Project Abutters

1 inch = 102 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Burrillville, RI

group

100

0 25 50

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 9.91 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Figure 2 Sheet 1 of 30

1 inch = 102 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Burrillville, RI

Application to Alter Freshwater Wetlands

Clear River Energy Center and Burrillville Interconnection Project

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 69 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 2 of 30

Burrillville, RI 1 inch = 101 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Application to Alter Freshwater Wetlands

Clear River Energy Center and Burrillville Interconnection Project

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 69 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 3 of 30

Clear River Energy Center and Burrillville Interconnection Project Application to Alter Freshwater Wetlands Burrillville, RI

1 inch = 101 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 4 of 30

Burrillville, RI 1 inch = 102 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Clear River Energy Center and Burrillville Interconnection Project Application to Alter Freshwater Wetlands

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 5 of 30

Burrillville, RI 1 inch = 103 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Clear River Energy Center and Burrillville Interconnection Project Application to Alter Freshwater Wetlands

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 6 of 30

Clear River Energy Center and Burrillville Interconnection Project Application to Alter Freshwater Wetlands Burrillville, RI

1 inch = 101 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 7 of 30

Burrillville, RI

1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

w03pr164 State : Shrub Swamp Federal : PFO/PEM 101.205 S L

> w03pr164 State ::Shrub Swamp Federal : PFO/PEM

> > **Project Abutters**

Figure 2 Sheet 8 of 30

Clear River Energy Center and Burrillville Interconnection Project Application to Alter Freshwater Wetlands Burrillville, RI

1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

8 Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 9 of 30

Ω 25 50 100

Burrillville, RI 1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017

3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 10 of 30

group 25 50 100

Burrillville, RI 1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Application to Alter Freshwater Wetlands

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 69 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 11 of 30

Application to Alter Freshwater Wetlands Burrillville, RI 1 inch = 100 feet

Clear River Energy Center and Burrillville Interconnection Project

Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

w03pr153 State : Shrub Wetland Federal : PSS

> w03pr152 State : **Emergent Plant** Community Federal : PEM

-w03pr155 State : Swamp Federal : PFO

w03pr154 State : Emergent Plant Community Federal : PEM

Project Abutters

Figure 2 Sheet 12 of 30

Clear River Energy Center and Burrillville Interconnection Project Application to Alter Freshwater Wetlands Burrillville, RI 1 inch = 100 feet

Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 69 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 13 of 30

Burrillville, RI 1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

8 Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

3) Power Engineers, Wetland Data, 2017

Application to Alter Freshwater Wetlands

w03pr144 State : Swamp Federal : PFO

w03pr147 State : Swamp Federal : PFO

Project Abutters

Figure 2 Sheet 14 of 30

Application to Alter Freshwater Wetlands Burrillville, RI 1 inch = 100 feet

Clear River Energy Center and Burrillville Interconnection Project

Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

w03pr142 State : Swamp Federal : PFO/PEM

w03pr143 State : Swamp Federal : PFO/PEM

/ Map-Lot: 87-8 **NARRAGANSETT** ELECTRIC COMPANY

> w03pr138 State : Swamp Federal : PFO

Map-Lot: 87-7 NARRAGANSETT ELECTRIC CO.

Map-Lot: 87-6 JENSEN ROBERT

Project Abutters

Figure 2 Sheet 15 of 30

25 50 100

Burrillville, RI 1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017

Clear River Energy Center and Burrillville Interconnection Project Application to Alter Freshwater Wetlands

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 69 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Map-Lot: 70-22 NARRAGANSETT ELECTRIC CO. Emergent Plant Community Federal : PEM Map-Lot: 71-17 EXCEL MANAGEMENT INC

Project Abutters

Figure 2 Sheet 16 of 30

Burrillville, RI 1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland ςψ, 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 17 of 30

Clear River Energy Center and Burrillville Interconnection Project Application to Alter Freshwater Wetlands Burrillville, RI

1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

w03pr132 State : Swamp Federal : PFO/PEM --

Map-Lot: 71-15 NARRAGANSETT ELECTRIC CO.

Project Abutters

Figure 2 Sheet 18 of 30

Application to Alter Freshwater Wetlands Burrillville, RI 1 inch = 100 feet

Clear River Energy Center and Burrillville Interconnection Project

Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 19 of 30

Burrillville, RI 1 inch = 100 feet

Application to Alter Freshwater Wetlands

Clear River Energy Center and Burrillville Interconnection Project

Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 69 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 20 of 30

Application to Alter Freshwater Wetlands

1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Burrillville, RI

qroup

100

25 50

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 69 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 21 of 30

Burrillville, RI 1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Clear River Energy Center and Burrillville Interconnection Project Application to Alter Freshwater Wetlands

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

8 Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 22 of 30

1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 23 of 30

25 50 100

Burrillville, RI 1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Application to Alter Freshwater Wetlands

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

8 Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

w03pr110 State : Swamp Federal : PFO/PEM

w03pr110 State : Swamp Federal : PFO/PEM

Map-Lot: 39-1 STATE OF RHODE ISLAND

> w03pr110 State : Swamp Federal : PFO/PEM

Map-Lot: 22-1 SAVAGE JAMES P & CHARLENE E

Project Abutters

Figure 2 Sheet 24 of 30

Burrillville, RI 1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Harris

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

w03pr108 State : Forested Wetland Federal : PFO

NUS TAFT RD

Map-Lot: 22-4 FRENETTE KEVIN M & TAMMY A

Map-Lot: 22-5 NARRAGANSETT ELECTRIC CO.

Map-Lot: 22-6 SHUGRUE ROBERT C & RENAY M

Project Abutters

Figure 2 Sheet 25 of 30

Burrillville, RI 0 25 50 100

1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 26 of 30

1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 27 of 30

1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

8 Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 28 of 30

1 inch = 100 feet Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

w03 State : Swamp Federal : PFO/POW/PEM

Map-Lot: 24-16 NARRAGANSETT ELECTRIC COMPANY

w03pr096 State : Swamp-Federal : PFO/POW/PEM

State : Emergent Plant Community Federal : PEM

Project Abutters

Figure 2 Sheet 29 of 30

w03pr095b State : Emergent Plant Community Federal : PEM

Map-Lot: 24-16 NARRAGANSETT ELECTRIC COMPANY

w03pr095a State : Emergent Plant Community Federal : PEM

w03pr097 State : Swamp Federal : PFO/PEM

w03pr099a State : Shrub Wetland Federal : PFO

Clear River Energy Center and Burrillville Interconnection Project Application to Alter Freshwater Wetlands Burrillville, RI 1 inch = 100 feet

Source: 1) ESRI, World Imagery, 2016 2) Town of Burrillville RI, Parcel Data, 2017 3) Power Engineers, Wetland Data, 2017

w03pr098a

State : Shrub Wetland Federal : PFO

Legend

Limit of Disturbance Project Impact Area 200' Buffer Around Project Impact Area Abutter's Parcel (BIP) Abutter's Parcel (CREC)

Field Delineated Wetland (****) 1 50' Perimeter Wetland 100' Riverbank Wetland 200' Riverbank Buffer Special Aquatic Site

Project Abutters

Figure 2 Sheet 30 of 30

Exhibit 3 Drainage Report

Drainage Report

For

Clear River Energy LLC Rhode Island

> March 2017 Rev. September 2017

DISCHARGE POINT COMPARISONS

Point A					
Storm Existing (1S) Proposed (21L) Velocity					
10-Year	20.16	17.72	0.77		
100-Year	46.68	39.67	1.05		
Note ¹ - Exit at Level Spreader					

Point B			
Storm	Existing (2S)	Proposed (22L)	
10-Year	86.73	74.75	
100-Year	181.63	174.13	
Note 1 -			
Note 2			

Point C			
Storm	Existing (3S)	Proposed (21R)	
10-Year	9.01	8.29	
100-Year	20.85	18.29	

Point D					
Storm Existing (4S) Proposed (23S) % Increas					
10-Year	140.96	137.55	-2.42%		
100-Year	327.06	319.56	-2.29%		

DISCHARGE POINT COMPARISONS

Point E (at Culvert under Wallum Lake Road)			
Storm	% Increase		
10-Year	137.39	119.16	-13.27%
100-Year	324.81	279.00	-14.10%

Point F				
Storm Existing Proposed % Incre				
10-Year	13.08	7.01	-46.41%	
100-Year	30.37	16.28	-46.39%	

Main Site (2P & 3P)

Total Drainage Area = 17.993 ac Impervious Area = 16.51 ac HSG = D

Groundwater Recharge (Re_v)

Note: LUHPPL therefore no infiltration required

Modified CN

Note:

$$CN = 1000 / \left[10 + 5P + 10Q - 10(Q^2 + 1.25QP)^{1/2} \right]$$

 $\begin{array}{ll} P = & 1.2 & \mbox{rainfall in inches (use 1.2 inches for the Water Quality Storm)} \\ Q = & 0.92 & \mbox{runoff volume in watershed inches (equal to WQ_v / total drainage area)} \\ A_t = & 17.993 & \mbox{total drainage area in acres} \\ CN = & 1000/(10+5^*P+10^*Q-10^*((Q^2)+1.25^*Q^*P)^{(1/2)}) \end{array}$

CN = 97.26 Use = 98

Surface Area of Filter Bed (A_f)

Note: LUHPPL therefore no infiltration required

$$A_f = (WQ_v)(d_f)/[(k)(h_f + d_f)(t_f)]$$

WQ _v =	59,931	Water Quality Volume in ft ³
$d_f =$		Filter Bed Depth in ft
k =		Coefficient of Permeability of Filter Media in ft/day
h _f =		Average height of water above surface in ft
t _f =		Design filter bed drain time in days
A _f =	(WQv*df)/((k)*(hf+df)*(tf))

```
A<sub>f</sub> = Surface area of filter bed in ft<sup>2</sup>
```

Channel Protection Volume (CP_v)

Note:

$$CP_v = (V_r) \times (0.65)$$

V_r = 147,973 runoff volume from 1-yr 24-hr Type III storm (ft³)

- T = 86400 Extended detention time (24 hrs) sec
- $CP_v = 96,182$ required channel protection storage volume (ft³)
- $CP_v/T = 1.11$ Average Release Rate (cfs)
- $(CP_v / T)^2 = 2.23$ Maximum Release Rate (cfs)

Main Site (2P & 3P)			
	2.16	Actual Release Rate (cfs) from HydroCAD	ΟΚ	
Downstream Analy	/sis (Poin	t E)		
Note:	Flow rates	s are from HydroCAD		
DA _{total} =	468.979	total drainage area in acres		
DA _{site} =	16.505	Site impervious drainage area in acres		
	3.52%	_		
Pre ₁₀ =	137.39	cfs		
Post ₁₀ =	119.16	cfs		
	13.27%	decrease		
Pre	324 81	ofe		
Post	278.08	ete		
1 031100 -	14.11%	decrease		

Gravel WVTS Surface Analysis Note: DA_{site} = 16.505 site drainage area in acres DA_{site} = 718,958 site drainage area in sq. ft. Min-WVTS_{surface} = 2,516 required minimum surface area for WVTS in sq. ft. Forebay_{surface} = 3,802 14.21% minimum is 10% OK WVTS_{surface} = 26,761 Actual WVTS surface area provided in sq ft OK

Total Drainage Area =	1.26	ac
Impervious Area =	0.899	ac
HSG =	D	

Groundwater Recharge (Re_v)

Note: Infiltration rate is < 0.5 inch/hr

Re	v = (1"	$(F)\left(\frac{l}{12}\right)$
F =		recharge factor (Table 3-4)
I =	0.899	impervious area (ac)
Re _v = 1	*F*(l/12)	
Re _v =	0	groundwater recharge volume (ac-ft)
Re _v =	0	groundwater recharge volume (ft ³)

Table 3-4		
HSG	Recharge Factor (F)	
А	0.60	
В	0.35	
С	0.25	
D	0.10	

Water Quality Volume (WQ_v)

Note:

$$WQ_{v} = (1")\left(\frac{I}{12}\right)$$

I = 0.899 impervious area (ac)

WQ_v = 1*(I/12)

 $WQ_v = \boxed{0.075} Water Quality Volume (ac-ft)$ $Re_v + WQ_v = 3,263 \text{ ft}^3$ $Re_v + WQ_v = 0.075 \text{ ac-ft}$

Modified CN

Note:

$$CN = 1000 / \left[10 + 5P + 10Q - 10(Q^2 + 1.25QP)^{1/2} \right]$$

P = 1.2 rainfall in inches (use 1.2 inches for the Water Quality Storm)

- Q = 0.71 runoff volume in watershed inches (equal to WQ_v / total drainage area)
- $A_t = 1.259$ total drainage area in acres

 $CN = 1000/(10+5^{*}P+10^{*}Q-10^{*}((Q^{2})+1.25^{*}Q^{*}P)^{(1/2)})$

CN = 94.63 Use = 95 Composit CN

3,263 ft³

Actual = 5,141 ft³

Actual = 0.118 ac-ft

ОК

OR

Entrance Road - West End (15R & 25R) Water Quality Flow (WQ_f) Note: from DP 13P $WQ_f = (q_u)(A)(Q)$ l_a = 0.11 T_c = 6 OR min. 0.10 hrs $I_a /P =$ 0.09 unit peak discharge in cfs/mi²/inch (from Exhibit 4-III of the TR-55 Manual) 260 q_u = A = 0.002 drainage area in mi² Q = 0.71 $WQ_f = qu^*A^*Q$ WQ_f = 0.37 peak discharge for a water quality event (cfs) OK 0.08 Actual peak discharge (cfs) from HydroCad

Surface Area of Filter Bed (A_f)

Note: For a Dry Swell

$$A_f = (WQ_v)(d_f)/[(k)(h_f + d_f)(t_f)]$$

WQ _v =	3,263	Water Quality Volume in ft ³	
d _f =	2.5	Filter Bed Depth in ft	
k =	1	Coefficient of Permeability of Filter Medi	a in ft/day
h _f =	0.31	Average height of water above surface in	n ft
t _f =	2	Design filter bed drain time in days	
A _f = A _f =	(WQv*df)/(1,452	((k)*(hf+df)*(tf)) Surface area of filter bed in ft ²	
	2,571	Actual surface area	ОК

Channel Protection Volume (CP_v)

Note: West End Ditch from 29P

$$CP_v = (V_r) \times (0.65)$$

 $V_r = \frac{8,102}{T}$ runoff volume from 1-yr 24-hr Type III storm (ft³) T = 86400 Extended detention time (24 hrs) sec

 $CP_v = 5,266$ required channel protection storage volume (ft³)

CP_v/T = 0.06 Average Release Rate (cfs)

 $(CP_v/T)^*2 = 0.12$ Maximum Release Rate (cfs)

Entrance Road - West End (15R & 25R) 1.94 Actual Release Rate (cfs) from HydroCAD

OK - below 2 cfs

Entrance Road - East End (19S, & 34S)

Total Drainage Area =	0.81	ac
Impervious Area =	0.589	ac
HSG =	D	

Groundwater Recharge (Re_v)

Note: Seperation from SHWT is less than 3 feet

Reı	, = (1")	$(F)\left(\frac{l}{12}\right)$
F = I =	0.589	recharge factor (Table 3-4) impervious area (ac)
Re _v = 1	*F*(l/12)	
Re _v =	0	groundwater recharge volume (ac-ft)
Re _v =	0	groundwater recharge volume (ft ³)

	Table 3-4
HSG	Recharge Factor (F)
А	0.60
В	0.35
С	0.25
D	0.10

Water Quality Volume (WQ_v)

Note:

$$WQ_{v} = (1") \left(\frac{I}{12}\right)$$

$$I = 0.589 \quad \text{imperviou}$$

I=0.589 impervious area (ac) $WQ_v=\ 1^*(I/12)$

$WQ_v =$	0.049	Water Quality Volume (ac-ft)	OR	2,138	ft ³	
$Re_v + WQ_v =$	2,138	ft ³	Actual =	2,420	ft ³	ОК
$Re_v + WQ_v =$	0.049	ac-ft	Actual =	0.056	ac-ft	

Modified CN

Note:

$$CN = 1000 / \left[10 + 5P + 10Q - 10(Q^2 + 1.25QP)^{1/2} \right]$$

P = 1.2 rainfall in inches (use 1.2 inches for the Water Quality Storm)

- Q = 0.73 runoff volume in watershed inches (equal to WQv / total drainage area)
- $A_t = 0.805$ total drainage area in acres

 $CN = 1000/(10+5^{*}P+10^{*}Q-10^{*}((Q^{2})+1.25^{*}Q^{*}P)^{(1/2)})$

CN = 94.89 Use = 95

Entrance Road - East End (19S, & 34S) Water Quality Flow (WQ_f) Note: $WQ_f = (q_u)(A)(Q)$ l_a = 0.11 T_c = 6 OR 0.10 hrs min. $I_a /P =$ 0.09 unit peak discharge in cfs/mi²/inch (from Exhibit 4-III of the TR-55 Manual) 260 q_u = A = 0.001 drainage area in mi² Q = 0.73 $WQ_f = qu^*A^*Q$ WQ_f = peak discharge for a water quality event (cfs) 0.24 OK 0.24 Actual peak discharge (cfs)

Surface Area of Filter Bed (A_f)

Note: For a Dry Swell

$$A_f = (WQ_v)(d_f)/[(k)(h_f + d_f)(t_f)]$$

WQ _v =	2,138	Water Quality Volume in ft ³	
d _f =	2.5	Filter Bed Depth in ft	
k =	1	Coefficient of Permeability of Filter Med	ia in ft/day
h _f =	0.31	Average height of water above surface	in ft
t _f =	2	Design filter bed drain time in days	
A _f =	(WQv*df)/	((k)*(hf+df)*(tf))	
$A_f =$	951	Surface area of filter bed in ft ²	
	1,415	Actual surface area	ОК

Channel Protection Volume (CP_v)

Note: Next to Wallum Road (23P)

$$CP_v = (V_r) \times (0.65)$$

 $V_r = 10,873$ runoff volume from 1-yr 24-hr Type III storm (ft³)

- T = 86400 Extended detention time (24 hrs) sec
- $CP_v = 7,067$ required channel protection storage volume (ft³)
- $CP_v/T = 0.08$ Average Release Rate (cfs)
- $(CP_v/T)^2 = 0.16$ Maximum Release Rate (cfs)

Entrance Road - East End (19S, & 34S) 1.56 Actual Release Rate (cfs) from HydroCAD

OK - below 2 cfs

Invenergy – Rhode Island - Clear River Energy Polution Calculations Summary Tables

Polution Calculations for Main Site (2P & 3P)					
Pollutant	Pre-Development	Post with out BMP Net Increase	Post with BMP Net Increase		
TSS (lbs TN/year)	477.3	19,242.7	5,123.4		
TP (lbs TN/year)	1.0	40.1	13.1		
TN(lbs TN/year)	16.3	328.8	187.4		
Bacteria (#col/100ml/year)	2,807.5	391,592.8	124,918.1		

Polut	tion Calculations for I	Dry Swale (15R & 29R)	
Pollutant	Pre-Development	Post with out BMP Net Increase	Post with BMP Net Increase
TSS (lbs TN/year)	33.4	1,320.3	132.0
TP (lbs TN/year)	0.1	2.2	1.5
TN(lbs TN/year)	1.1	19.6	8.8
Bacteria (#col/100ml/year)	196.5	15,146.0	4,543.8

Polution Calculations for Dry Swale (18R & 20R)					
Pollutant	Pre-Development	Post with BMP Net Increase			
TSS (lbs TN/year)	21.4	866.8	86.7		
TP (lbs TN/year)	0.0	1.4	1.0		
TN(lbs TN/year)	0.7	12.9	5.8		
Bacteria (#col/100ml/year)	125.6	9,940.5	2,982.2		

Polution Calculations for Main Site (2P & 3P) forTSSA =17.99drainage area in acres					
P = 51 rainfall depth (inches) - from Figure H-8					
Pre-Development: Post-Development:					
Note: Site is Undeveloped/Rural Note: Site is Industrial					
TSS = 51 mg/l (Table H-2) TSS = 120 mg/l (Table H-2)					
TSS Removal Note: For Main Site					
$L = [(P)(P_j)(R_v)/12](C)(A)(2.72)$					
Pre-Development:					
Note: Site is Undeveloped/Rural					
P = 51 rainfall depth (inches) - from Figure H-8					
Pj = 0.9 rainfall correction factor					
Rv = 0.05 runoff coefficient expressing the fraction of rainfall converted to runoff	unoff coefficient expressing the fraction of rainfall converted to runoff				
C = 51 flow-weighted mean concentration of the pollutant in urban runoff (mg/L) - from Table H-2	low-weighted mean concentration of the pollutant in urban runoff (mg/L) - from Table H-2				
A = 17.55 contributing dramage area of development site (acres)					
Rv = 0.05 + 0.009(%I)					
%I = 0 the percent of site imperviousness					
L = ((D34*D35*D36)/12)*D37*D38*2.72					
L = 477.3 lbs TN/year					
Post Development:					
Note: Site is Industrial					
P = 51 rainfall depth (inches) - from Figure H-8					
$P_{J} = 0.9$ rainial correction factor $P_{V} = 0.878$ runoff coefficient expressing the fraction of rainfall converted to runoff					
R = 0.076 for the result of the polynomial converted to running the result of the polynomial converted to running (mg/l) - from Table H-2					
A = 17.99 contributing drainage area of development site (acres)					
Rv = 0.05 + 0.009(%I)					
%I = 92 the percent of site imperviousness					
L = ((D54*D55*D56)/12)*D57*D58*2.72					

L = 19,720.0 lbs

Conclusion:

Net = 19,242.7 Increase in TSS

Polution Ca	Polution Calculations for Main Site (2P & 3P) for TSS			TSS
Pollutant Ren	noval	:		
1st BMP: Note:	I	Forebay		
	RE =	25%	Removal Efficiency from Table H-4	
	LR =	4,810.7	Load Reduction (lbs TN/year)	
Net L	oad =	14,432.1	lbs TN/year	
2nd BMP:				
Note:	(Gravel WV	TS	
	:	2nd BMP w	vill operate at75% efficiency	
	RE =	86%	Removal Efficiency from Table H-3	
	LR =	9,308.7	Load Reduction (lbs TN/year)	
TSS Net Loa	ad =	<mark>5,123.4</mark>	lbs TN/year	

Polution Calculations for Main Site (2P & 3P) for TP A = 17.99 drainage area in acres P = 51 rainfall depth (inches) - from Figure H-8 **Pre-Development: Post-Development:** Site is Undeveloped/Rural Site is Industrial Note: Note: TP = 0.11 mg/l (Table H-2) TP = 0.25 mg/l (Table H-2) **TSS Removal** For Main Site Note: L = [(P)(Pj)(Rv)/12](C)(A)(2.72)**Pre-Development:** Note: Site is Undeveloped/Rural P = 51 rainfall depth (inches) - from Figure H-8 Pi = 0.9 rainfall correction factor Rv = runoff coefficient expressing the fraction of rainfall converted to runoff 0.05 flow-weighted mean concentration of the pollutant in urban runoff (mg/L) - from Table H-2 C = 0.11 contributing drainage area of development site (acres) A = 17.99 Rv = 0.05 + 0.009(%I)%I = 0 the percent of site imperviousness L = ((D34*D35*D36)/12)*D37*D38*2.72 lbs TN/year L = 1.0 **Post-Development:** Note: Site is Industrial P = 51 rainfall depth (inches) - from Figure H-8 Pi = 0.9 rainfall correction factor Rv = 0.878 runoff coefficient expressing the fraction of rainfall converted to runoff C = 0.25 flow-weighted mean concentration of the pollutant in urban runoff (mg/L) - from Table H-2 17.99 contributing drainage area of development site (acres) A =

Rv = 0.05 + 0.009(%I)

%I = 92 the percent of site imperviousness

L = ((D54*D55*D56)/12)*D57*D58*2.72

L = 41.1 lbs

Conclusion:

Net = 40.1 Increase in TSS

Polution Ca	Polution Calculations for Main Site (2P & 3P) for TP			TP
Pollutant Ren	nova	l:		
1st BMP: Note:		Forebay		
	RE =	8%	Removal Efficiency from Table H-4	
	LR =	3.2	Load Reduction (lbs TN/year)	
Net L	.oad =	36.8	lbs TN/year	
2nd BMP:		Gravel W/V	re	
Note.		2nd BMP w	ill operate at <u>75%</u> efficiency	
	RE =	86%	Removal Efficiency from Table H-3	
	LR =	23.8	Load Reduction (lbs TN/year)	
TP Net Loa	ad =	13.1	lbs TN/year	

Polution Calculations for Main Site (2P & 3P) forTN $A = \begin{bmatrix} 17.99 \\ P = \end{bmatrix}$ drainage area in acres rainfall depth (inches) - from Figure H-8
Pre-Development: Post-Development: Note: Site is Undeveloped/Rural Note: Site is Industrial
TN = 1.74 mg/l (Table H-2) TN = 2.1 mg/l (Table H-2)
TSS Removal Note: For Main Site
$L = [(P)(P_j)(R_v)/12](C)(A)(2.72)$
Pre-Development: Note: Site is Undeveloped/Rural
P = 51 rainfall depth (inches) - from Figure H-8
$P_J = 0.9$ rainfall correction factor Rv = 0.05 runoff coefficient expressing the fraction of rainfall converted to runoff
C =1.74flow-weighted mean concentration of the pollutant in urban runoff (mg/L) - from Table H-2 $A =$ 17.99contributing drainage area of development site (acres)
Rv = 0.05 + 0.009(%I)
%I = 0 the percent of site imperviousness
L = ((D34*D35*D36)/12)*D37*D38*2.72
L = 16.3 lbs TN/year
Post-Development: Note: Site is Industrial
P = 51 rainfall depth (inches) - from Figure H-8
P _J = 0.9 rainfall correction factor Rv = 0.878 runoff coefficient expressing the fraction of rainfall converted to runoff
C = 2.1 flow-weighted mean concentration of the pollutant in urban runoff (mg/L) - from Table H-2 A = 17.99 contributing drainage area of development site (acres)
Rv = 0.05 + 0.009(%I)
%I = 92 the percent of site imperviousness

- L = ((D54*D55*D56)/12)*D57*D58*2.72
- L = 345.1 lbs

Conclusion:

Net = 328.8 Increase in TSS

Polution Calculations for Main Site (2P & 3P) for TN				
Pollutant Ren	noval:			
1st BMP: Note:	F	orebay		
	RE =	3%	Removal Efficiency from Table H-4	
	LR =	9.9	Load Reduction (lbs TN/year)	
Net L	oad =	319.0	lbs TN/year	
2nd BMP: Note: Gravel WVTS 2nd BMP will operate at <u>75%</u> efficiency				
	RE =	55%	Removal Efficiency from Table H-3	
	LR =	131.6	Load Reduction (lbs TN/year)	
TN Net Loa	id =	187.4	lbs TN/year	

Polution Ca	alculat	ions for	Main Site (2P & 3P) for Bacteria
	A =	17.99	drainage area in acres
	P =	51	rainfall depth (inches) - from Figure H-8
Bro Dovo	Jonmo	nt.	Boot Development
Pre-Deve	siopme Si	n u: to is Undov	Post-Development: veloped/Bural Note: Site is Industrial
Note.	0		
Bact	eria =	300	#col/100ml (Table H-2) Bacteria = 2400 #col/100ml (Table H-2)
TSS Remova	al		
Note:	Fo	or Main Site	3
L =	: [(P)(Pj)	(Rv)/12	(C)(A)(2.72)
Pre-Deve	lopme	nt:	
Note:	Si	te is Undev	veloped/Rural
	P	51	rainfall denth (inches) - from Figure H-8
	Pj =	0.9	rainfall correction factor
	Rv =	0.05	runoff coefficient expressing the fraction of rainfall converted to runoff
	C =	300	flow-weighted mean concentration of the pollutant in urban runoff (mg/L) - from Table H-2
	A =	17.99	
	Rv = 0.	05 + 0.009	(%1)
	%l =	0	the percent of site imperviousness
	L = (([D26*D27*C	128)/12)*D29*D30*2.72
		-	-, ,
	L =	2,807.5	lbs TN/year
Post-Dev	/elopm	ent:	
Note:	Si	te is Indust	rial
	P =	51	rainfall depth (inches) - from Figure H-8
	Pj =	0.9	rainfall correction factor
	Rv =	0.878	runoff coefficient expressing the fraction of rainfall converted to runoff
	C =	2400	tlow-weighted mean concentration of the pollutant in urban runoff (mg/L) - from Table H-2
	A =	17.99	contributing orainage area of development site (acres)

Rv = 0.05 + 0.009(%I)

%I = 92 the percent of site imperviousness

L = ((D46*D47*D48)/12)*D49*D50*2.72

L = 394,400.3 lbs

Conclusion:

Net = 391,592.8 Increase in TSS

Polution Calculations for Main Site (2P & 3P) for Bacteria				
Pollutant Rem	noval	:		
1st BMP: Note:	F	Forebay		
	RE =	12%	Removal Efficiency from Table H-4	
	LR =	46,991.1	Load Reduction (lbs TN/year)	
Net Lo	ad =	344,601.7	lbs TN/year	
2nd BMP: Note:	(2	Gravel WVTS 2nd BMP will (operate at 75% efficiency	
	RE =	85%	Removal Efficiency from Table H-3	
	LR =	219,683.6	Load Reduction (lbs TN/year)	
Bacteria Net Load	d =	124,918.1	#col/100ml/year	

Conclusion:

Net = 1,320.3 Increase in TSS

Polution Calculations for Dry Swale (15R & 29R) for TSS

Pollutant Removal:

1st BMP: Note:	D	ry Swale	
	RE =	90%	Removal Efficiency from Table H-3
	LR =	1,188.3	Load Reduction (lbs TN/year)
TSS Net	Load =	132.0	lbs TN/year

2 2.0

Conclusion:

Net = 2.2 Increase in TSS

Polution Calculations for Dry Swale (15R & 29R) for TP

Pollutant Removal:

1st BMP: Note:	Dry Swale		
	RE =	30%	Removal Efficiency from Table H-3
	LR =	0.7	Load Reduction (lbs TN/year)
TP Net I	.oad =	1.5	lbs TN/year

Conclusion:

Net = 19.6 Increase in TSS

Polution Calculations for Dry Swale (15R & 29R) for TN

Pollutant Removal:

1st Bl ♪	MP: lote:	Dry Swale	
	RE =	55%	Removal Efficiency from Table H-3
	LR =	10.8	Load Reduction (lbs TN/year)
TN	Net Load =	8.8	lbs TN/year
Polution Calculations	for Dry Swale (15R & 29R) for Bacteria		
--	---		
A = 1.25	drainage area in acres		
P = 51	rainfall depth (inches) - from Figure H-8		
Bro Dovelonmenti	Post Development:		
Note: Site is Ur	developed/Bural Note: Site is a Boad		
Bacteria = 300	#col/100ml (Table H-2) Bacteria = 1700 #col/100ml (Table H-2)		
TSS Removal Note: For Dry S	wale along West half of Road		
$\mathbf{L} = \left[(\mathbf{p})(\mathbf{p}_i)(\mathbf{R}_{\mathbf{v}}) \right] $	[2](C)(A)(2,72)		
Pre-Development:			
Note: Site is Ur	developed/Rural		
	vainfall danth (inchas), from Figure 110		
P = 51 Pi = 09	rainfall correction factor		
Rv = 0.05	runoff coefficient expressing the fraction of rainfall converted to runoff		
C = 300	flow-weighted mean concentration of the pollutant in urban runoff (mg/L) - from Table H-2		
A = 1.259	contributing drainage area of development site (acres)		
By - 0.05 + 0.0			
$110 = 0.03 \pm 0.0$			
%l = 0	the percent of site imperviousness		
L = ((D20 D2	7 020/12) 029 030 2.72		
L = 196.5	#col/100ml/year		
Deet Development			
Note: Site is a	Road		
P = 51	rainfall depth (inches) - from Figure H-8		
Pj = 0.9	rainfall correction factor		
RV = 0.683 C = 1700	funon coefficient expressing the fraction of rainfall converted to runon flow-weighted mean concentration of the pollutant in urban runoff (mg/l) - from Table H-2		
A = 1.25	contributing drainage area of development site (acres)		
Rv = 0.05 + 0.05	009(%I)		
%l = 71	the percent of site imperviousness		
L = ((D46*D4	7*D48)/12)*D49*D50*2.72		
L = 15,342	.4 lbs		

Conclusion:

Net = 15,146.0 Increase

Polution Calculations for Dry Swale (15R & 29R) for Bacteria

Pollutant Removal:

1st B	MP: Note:	Dry Swale	
	RE =	70%	Removal Efficiency from Table H-3
	LR =	10,602.2	Load Reduction
Bacteria	Net Load =	<mark>4,543.8</mark>	#col/100ml/year

Conclusion:

Net = 866.8 Increase

Polution Calculations for Dry Swale (18R & 20R) for TSS

Pollutant Removal:

1st BMP: Note:	Di	ry Swale	
	RE =	90%	Removal Efficiency from Table H-3
	LR =	780.2	Load Reduction
TSS Net	Load =	86.7	lbs TN/year

L = 1.5 lbs

Conclusion:

Net = 1.4 Increase

Polution	Calculations	for Dry	/ Swale ((18R & 20R) for TP
----------	--------------	---------	-----------	------------	----------

Pollutant Removal:

1st BMP: Note:	Di	ry Swale	
	RE =	30%	Removal Efficiency from Table H-3
	LR =	0.4	Load Reduction
TP Net L	.oad =	1.0	lbs TN/year

L = 13.6 lbs

Conclusion:

Net = 12.9 Increase

Polution Calcul	ations for Dr	y Swale (1	18R & 20R)) for TN
-----------------	---------------	------------	------------	----------

Pollutant Removal:

1st BMP: Note:	D	ry Swale	
	RE =	55%	Removal Efficiency from Table H-3
	LR =	7.1	Load Reduction
TN Net L	oad =	5.8	lbs TN/year

Polution Calcula	tions for Dry Swale (18R & 20R) for Bacteria	
A =	0.805 drainage area in acres	
P =	51 rainfall depth (inches) - from Figure H-8	
Des Develonmen		
Pre-Developmen	I: Post-Development:	
Note. Sit	a is ondeveloped/hurai note. Site is a hoad	
Bacteria =	300 #col/100ml (Table H-2) Bacteria = 1700 #col/100ml (Table H-2)	
TSS Removal	- Dry Swale along West helf of Boad	
Note. To	bry Swale along West han of hoad	
$I = [(p)(p_i))$	$(p_{\rm m})/12](C)(A)(2.72)$	
Pre-Developmen	•	
Note: Site	• is Undeveloped/Rural	
_		
P =	51 rainfall depth (inches) - from Figure H-8	
Fj = By -	0.9 runnal conficient expressing the fraction of rainfall converted to runoff	
C =	300 flow-weighted mean concentration of the pollutant in urban runoff (mo/l) - from Table H-2	
A =	0.805 contributing drainage area of development site (acres)	
Rv = 0.0	5 + 0.009(%l)	
0/1		
%I =	the percent of site imperviousness	
L = ((D	26°D27°D28/12)°D29°D30°2.72	
L =	125.6 #col/100ml/year	
		—
Post-Developme	nt:	
Nole: Sil	a is a hoad	
P =	51 rainfall depth (inches) - from Figure H-8	
Pi =	0.9 rainfall correction factor	
, Rv =	0.707 runoff coefficient expressing the fraction of rainfall converted to runoff	
C =	1700 flow-weighted mean concentration of the pollutant in urban runoff (mg/L) - from Table H-2	
A =	0.805 contributing drainage area of development site (acres)	
Rv = 0.0	5 + 0.009(%l)	
%l =	73 the percent of site imperviousness	
L = ((D	46*D47*D48)/12)*D49*D50*2.72	
L =	10,066.2 lbs	

Conclusion:

Net = 9,940.5 Increase

Polution Calculations for Dry Swale (18R & 20R) for Bacteria

Pollutant Removal:

1st B	MP: Note:	Dry Swale	
	RE =	70%	Removal Efficiency from Table H-3
	LR =	6,958.4	Load Reduction
Bacteria	Net Load =	2,982.2	#col/100ml/year

DITCH CALCULATIONS

Dry Swale - 1 (15R)					
Storm	Flow	Depth ¹	Velocity		
WQv	0.38	0.11	1.49		
1-Year	1.58	0.26	2.40		
10-Year	3.47	0.40	3.05		
100-Year	6.75	0.58	3.69		

Dry Swale - 2 (29R)					
Storm	Flow	Depth ¹	Velocity		
WQv	0.47	0.13	1.64		
1-Year	1.94	0.29	2.62		
10-Year	4.30	0.45	3.33		
100-Year	8.38	0.64	4.02		
100-Year 8.38 0.64 4.02 Note 1 - Depth of ditch is 2 feet					

Dry Swale - 3 (18R)					
Storm	Flow	Depth ¹	Velocity		
WQv	0.28	0.04	1.03		
1-Year	1.11	0.10	1.75		
10-Year	2.41	0.16	2.34		
100-Year	4.65	0.24	2.99		
Note 1 - Depth of ditch is 2 feet					

DITCH CALCULATIONS

Flow	Depth ¹	Velocity
0.4	0.14	1.27
1.61	0.31	1.99
3.52	0.47	2.52
6.82	0.67	3.03
	Flow 0.4 1.61 3.52 6.82	FlowDepth0.40.141.610.313.520.476.820.67

Rerouting Ditch (23R)			
Storm	Flow	Depth ¹	Velocity
1-Year	0.95	0.19	2.06
10-Year	2.95	0.37	2.94
100-Year	6.85	0.58	3.76
Note 1 - Ditch is 1' deep;	2' wide; with 2:1 side slopes		

Ditch below Culvert (30R)			
Storm	Flow	Depth ¹	Velocity
1-Year	1.56	0.23	2.81
10-Year	4.87	0.43	3.99
100-Year	11.31	0.67	5.07

Note 1 - Ditch is 1' deep; 2' wide; with 2:1 side slopes

Level Spreader (8R)			
Storm	Flow	Depth	Velocity
1-Year	2.57	0.05	0.67
10-Year	3.75	0.06	0.77
100-Year	8.38	0.10	1.05

DITCH CALCULATIONS

Entr. Pipe Exit Ditch (21R)		
Flow	Depth ¹	Velocity
2.88	0.15	2.02
8.29	0.29	3.00
18.29	0.46	4.00
	Entr. Pipe Ex Flow 2.88 8.29 18.29	Flow Depth ¹ 2.88 0.15 8.29 0.29 18.29 0.46

	24	4P (Flow Splitter)	
Storms			
	Proposed	Proposed	
	thru Secondary	thru Primary	
		(cfs)	Water Elev. (ft)
WQ _f	0	17.23	565.26
10-Year	54.59	26.66	568.34
100-Year	105.27	33.99	570.34
_		2P (Forebay)	
Storms			
	Existing	Total	1
	Existing Calculated	Total Proposed	
	Existing Calculated (cfs)	Total Proposed (cfs)	Water Elev. (ft)
WQ _f	Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10	Water Elev. (ft) 564.50
WQ _f 10-Year	Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10 27.83	Water Elev. (ft) 564.50 565.24
WQ _f 10-Year 100-Year	Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10 27.83 36.51	Water Elev. (ft) 564.50 565.24 565.30
WQ _f 10-Year 100-Year	Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10 27.83 36.51	Water Elev. (ft) 564.50 565.24 565.30
WQ _f 10-Year 100-Year	Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10 27.83 36.51	Water Elev. (ft) 564.50 565.24 565.30
WQ _f 10-Year 100-Year	Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10 27.83 36.51	Water Elev. (ft) 564.50 565.24 565.30
WQ _f 10-Year 100-Year	Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10 27.83 36.51	Water Elev. (ft) 564.50 565.24 565.30
WQ _f [10-Year] 100-Year] 100-Year] 100-Year]	Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10 27.83 36.51	Water Elev. (ft) 564.50 565.24 565.30
WQ _f 10-Year 100-Year	Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10 27.83 36.51	Water Elev. (ft) 564.50 565.24 565.30
WQ _f	Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10 27.83 36.51	Water Elev. (ft) 564.50 565.24 565.30
WQ _f 10-Year 100-Year	Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10 27.83 36.51	Water Elev. (ft) 564.50 565.24 565.30
WQ _f () 10-Year () 100-Year (Existing Calculated (cfs) 6.72	Total Proposed (cfs) 5.10 27.83 36.51	Water Elev. (ft) 564.50 565.24 565.30

	3P (Gravel WVTS)		
Storms			
	Total	Total	
	In (cfs)	Out (cfs)	Water Elev. (ft)
WQ _f		3.31	561.77
10-Year		23.97	562.95
100-Year		37.4	563.86
	41	P (Detention Pond	(k
Storms			
	Total	Total	
	In (cfs)	Out (cfs)	Water Elev. (ft)
WQ _f		1.07	558.74
10-Year		3.08	561.7
100-Year		7.62	563.93
1-Year		2.16	559.99

	1	8P (Level Spreader)	
Storms			
	Total	Total	
	In (cfs)	Out (cfs)	Water Elev. (ft)
WQ _f		1.07	558.07
10-Year		3.08	558.15
100-Year		7.62	558.27
1-Year		2.16	558.12
		21L (Point A)	
Storms			
	Existing	Proposed Total	
	Calculated		
1	(cfs)	(cfs)	Water Elev. (ft)
WQ _f [⊥]	6.72	1.13	
10-Year	20.16	17.72	
100-Year	46.68	39.67	
Note 1 = Calculate	d		

POINT B			
	28P	(DP for Ramp Culve	ert)
Storms			•
	Existing Total	Proposed Total	
	(cfs)	(cfs)	Water Elev. (ft)
1-Year		1.58	555.44
10-Year		3.46	555.69
100-Year		6.71	556.03
	200/0		
	29P (Grav	el inlet for Swale li	nto 13P)
Storms			
	Existing Total	Proposed Total	
	(cfs)	(cfs)	Water Elev. (ft)
WQ _f		0.47	538.59
1-Year		1.94	539.00
10-Year		4.30	539.59
100-Year		8.38	541.84

	13P	(DP for Swale - 1 &	. 2)	
Storms				
	Existing Total	Proposed Total		
	(cfs)	(cfs)	Water Elev. (ft)	
WQ _f	0.22	0.05	538.22	
1-Year	0.14	0.13	538.86	
10-Year		0.78	539.56	
100-Year		6.50	539.94	

		17P (12' x 6' Box)	
Storms			
	Existing Total	Proposed Total	
	(cfs)	(cfs)	Water Elev. (ft)
1-Year	28.94	24.02	533.00
10-Year	86.73	74.75	533.76
100-Year ¹	181.63	174.13	534.93
1. Includes flow cr	ossing from the Dry Arr	n Basin	
		30P (Culvert 2)	
Storms		х <i>ү</i>	
	Existing Total	Proposed Total	
	(cfs)	(cfs)	Water Elev. (ft)
1-Year		0.95	534.07
10-Year		2.95	534.46
100-Year ¹		6.85	535.14

	22L (Point B)		
Storms			
	Existing Total	Proposed Total	
	(cfs)	(cfs)	Water Elev. (ft)
1-Year	28.94	24.02	
10-Year	86.73	74.75	
100-Year ¹	181.63	174.13	

POINT C			
	15P (P	oint C - Culvert at E	Entr.)
Storms			
	Existing Total	Proposed Total	
	(cfs)	(cfs)	Water Elev. (ft)
1-Year	2.89	2.88	529.83
10-Year	9.01	8.29	530.16
100-Year	20.85	18.29	530.33
		31P (Culvert 3)	
Storms		SII (cuivert S)	
Storms			
	Existing Iotal	Proposed Total	Mater Flow (ft)
4.14	(CTS)	(CTS)	water Elev. (ft)
1-Year		1.11	533.44
10-Year		2.41	533.68
100-Year ¹		4.65	534.01
		_	

	23P (D	P for Swell at Entre	ence)
Storms			
	Existing Total	Proposed Total	
	(cfs)	(cfs)	Water Elev. (ft)
WQ _f	0.22	0.22	530.99
1-Year		1.56	531.74
10-Year		3.47	531.86
100-Year		6.73	532.01

	Point D	
Existing Total	Proposed Total	
(cfs)	(cfs)	% Reduction
45.55	44.54	2.22%
140.96	137.55	2.42%
327.06	319.56	2.29%
	Existing Total (cfs) 45.55 140.96 327.06	Existing Total Proposed Total (cfs) (cfs) 45.55 44.54 140.96 137.55 327.06 319.56 1000000000000000000000000000000000000

POINT F			
	(),	Vildlife Crossing #2	<u> </u>
Storms	(0)	vitalite crossing #2)
5001115	Existing Total	Proposed Total	
	(cfs)	(cfs)	Water Elev. (ft)
1-Year	4.23	2.27	
10-Year	13.08	7.01	
100-Year	30.37	16.28	
Storms		28L (Point F)	
	Existing Total	Proposed Total	
	(cfs)	(cfs)	Water Elev. (ft)
1-Year	4.23	2.27	
10-Year	13.08	7.01	
100-Year	30.37	16.28	

DRAWING INDEX

			PROJECT MANAGER	C. JAC
4	7/19/2017	REVISED PER TECHNICAL REVIEW COMMENTS BY		
		RI DEM OF JUNE 19, 2017		-
3	3/27/2017	REVISION		
2	2/17/2017	REVISION		
1	8/17/2016	SOIL EROSION SEDIMENT CONTROL PLAN		
SSUE	DATE	DESCRIPTION	PROJECT NUMBER	100213

No. 0011618 REGISTERED PROFESSIONAL ENGINEER **GIVIL**

135-002, 137-002, 137-003, 137-021, 153-001, 153-002 TOWN OF BURRILLVILLE, PROVIDENCE COUNTY, RHODE ISLAND

2	Ĺ	έν -
	X	s S

STRUCTURE TABLE							
NAME	TYPE	LAYOUT COORDINATES	LID	SUMP ELEVATION			
A-00	FLOW SPLITTER	N:320779.39 E:259167.35	575.96	562.96			
A-01	MANHOLE	N:320837.98 E:259130.75	573.78	563.12			
A-02	DROP BOX INLET	N:320907.01 E:259241.27	572.62	563.43			
A-03	DROP BOX INLET	N:321030.54 E:259439.04	572.38	564.02			
A-04	DROP BOX INLET	N:321245.76 E:259299.53	572.69	564.66			
A-05	DROP BOX INLET	N:321342.22 E:259453.97	572.94	565.11			
A-06	DROP BOX INLET	N:321454.91 E:259383.40	572.57	565.43			
A-07	DROP BOX INLET	N:321661.52 E:259249.96	573.02	566.05			
A-08	MANHOLE	N:321677.22 E:259180.19	573.50	566.25			
A-09	DROP BOX INLET	N:321770.75 E:259121.77	573.00	566.52			
A-10	DROP BOX INLET	N:321885.65 E:259050.00	573.00	566.86			
A1-01	MANHOLE	N:321688.60 E:258979.02	573.36	566.89			
A1-02	DROP BOX INLET	N:321729.69 E:258955.59	572.77	567.01			
A2-01	DROP BOX INLET	N:321124.51 E:259105.41	573.16	564.09			
A2-02	MANHOLE	N:321142.55 E:259134.30	573.59	564.18			
A2-03	DROP BOX INLET	N:321350.11 E:259120.61	572.95	564.70			
A2-04	DROP BOX INLET	N:321516.23 E:259016.85	572.95	565.19			
A2-05	DROP BOX INLET	N:321446.08 E:258904.55	573.17	565.52			
A3-01	DROP BOX INLET	N:321235.22 E:259065.79	573.16	564.88			
A4-01	DROP BOX INLET	N:320805.65 E:259079.00	572.62	563.27			

	STRUCTURE TABLE							
NAME	TYPE	LAYOUT COORDINATES	LID	SUMP ELEVATION				
A4-02	DROP BOX INLET	N:321023.15 E:258943.15	573.16	563.91				
A4-03	DROP BOX INLET	N:321181.95 E:258843.96	573.16	564.38				
A4-04	MANHOLE	N:321268.12 E:258790.13	574.34	564.63				
A4-05	DROP BOX INLET	N:321339.19 E:258745.74	572.89	564.84				
A4-06	DROP BOX INLET	N:321477.23 E:258659.52	573.50	565.29				
A4-07	DROP BOX INLET	N:321584.23 E:258830.56	573.50	565.77				
A5-01	DROP BOX INLET	N:321207.77 E:258693.50	574.34	564.91				
A5-02	DROP BOX INLET	N:321105.53 E:258721.62	573.45	565.18				
A5-03	DROP BOX INLET	N:320964.15 E:258810.50	573.26	565.60				
A6-01	MANHOLE	N:320835.66 E:259257.44	574.84	562.43				

STRUCTURE TABLE							
NAME	TYPE	LAYOUT COORDINATES	LID	SUMP ELEVATION			
B-01	MANHOLE	N:321256.01 E:259815.13	558.92	551.20			
B-02	MANHOLE	N:321225.30 E:259660.67	561.99	553.00			
B-03	MANHOLE	N:321120.14 E:259459.76	565.53	555.27			
B-04	MANHOLE	N:321016.43 E:259473.41	566.17	556.32			

PROPOSED DRAINAGE PLAN

FILENAME 01C400.dwg SCALE 1" = 100'

MH STORM SEWER CALCULATIONS 10-YEAR STORM

SN	Element	Invert	Ground/Rim	Ground/Rim	Peak	Peak	Average	Average
	ID	Elevation	(Max)	(Max)	Inflow	Lateral	HGL	HGL
			Elevation	Offset		Inflow	Elevation	Depth
							Attained	Attained
		(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft)
1	A-01	563.12	573.78	10.66	57.91	0.00	564.44	1.32
2	A-02	563.43	572.62	9.19	39.46	3.86	564.44	1.01
3	A-03	564.02	572.38	8.36	21.98	3.05	564.45	0.43
4	A-04	564.66	572.69	8.03	19.70	3.39	564.80	0.14
5	A-05	565.11	572.94	7.83	16.91	2.60	565.25	0.14
6	A-06	565.44	572.57	7.13	14.85	2.53	565.56	0.13
7	A-07	566.05	573.02	6.97	12.67	3.31	566.16	0.11
8	A-08	566.25	573.84	7.59	9.57	0.00	566.35	0.10
9	A-09	566.52	572.90	6.38	9.72	2.40	566.63	0.11
10	A-10	566.86	572.90	6.04	2.40	2.40	566.92	0.06
11	A1-01	566.89	573.36	6.47	5.11	0.00	566.97	0.08
12	A1-02	567.01	572.77	5.76	5.13	5.13	567.09	0.08
13	A2-01	564.09	573.16	9.07	14.65	3.39	564.45	0.36
14	A2-02	564.18	573.59	9.41	8.66	0.00	564.45	0.27
15	A2-03	564.70	572.95	8.25	9.12	3.31	564.81	0.11
16	A2-04	565.19	572.95	7.76	6.39	3.31	565.28	0.09
17	A2-05	565.52	573.17	7.65	3.31	3.31	565.59	0.07
18	A3-01	564.38	573.16	8.78	3.31	3.31	564.47	0.09
19	A4-01	563.27	572.62	9.35	18.57	2.29	564.44	1.17
20	A4-02	563.91	573.16	9.25	16.75	3.39	564.44	0.53
21	A4-03	564.38	573.16	8.78	13.86	3.31	564.52	0.14
22	A4-04	564.63	574.34	9.71	11.05	0.00	564.76	0.13
23	A4-05	564.84	572.89	8.05	8.73	3.96	564.95	0.11
24	A4-06	565.29	572.92	7.63	5.45	2.45	565.37	0.08
25	A4-07	565.77	572.75	6.98	3.31	3.31	565.83	0.06
26	A5-01	564.91	574.34	9.43	2.88	0.00	564.98	0.07
27	A5-02	565.18	573.45	8.27	3.14	1.67	565.26	0.08
28	A5-03	565.60	573.26	7.66	1.72	1.72	565.65	0.05
29	A6-01	562.49	576.00	13.51	51.65	0.00	563.81	1.32

MH STORM SEWER CALCULATIONS 100-YEAR STORM

SN	Element	Invert	Ground/Rim	Ground/Rim	Peak	Peak	Average	Average
	ID	Elevation	(Max)	(Max)	Inflow	Lateral	HGL	HGL
			Elevation	Offset		Inflow	Elevation	Depth
							Attained	Attained
		(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft)
1	A-01	563.12	573.78	10.66	122.71	0.00	564.49	1.37
2	A-02	563.43	572.62	9.19	83.70	6.88	564.50	1.07
3	A-03	564.02	572.38	8.36	47.29	5.44	564.52	0.50
4	A-04	564.66	572.69	8.03	41.90	6.04	564.87	0.21
5	A-05	565.11	572.94	7.83	35.85	4.65	565.32	0.21
6	A-06	565.44	572.57	7.13	31.17	4.51	565.63	0.20
7	A-07	566.05	573.02	6.97	26.66	5.90	566.22	0.17
8	A-08	566.25	573.84	7.59	20.76	0.00	566.41	0.16
9	A-09	566.52	572.90	6.38	20.04	4.27	566.68	0.16
10	A-10	566.86	572.90	6.04	4.27	4.27	566.96	0.10
11	A1-01	566.89	573.36	6.47	11.39	0.00	567.01	0.12
12	A1-02	567.01	572.77	5.76	9.15	9.15	567.14	0.13
13	A2-01	564.09	573.16	9.07	29.88	6.04	564.52	0.43
14	A2-02	564.18	573.59	9.41	17.78	0.00	564.53	0.35
15	A2-03	564.70	572.95	8.25	17.75	5.90	564.87	0.17
16	A2-04	565.19	572.95	7.76	11.82	5.90	565.34	0.15
17	A2-05	565.52	573.17	7.65	5.90	5.90	565.64	0.12
18	A3-01	564.38	573.16	8.78	5.90	5.90	564.53	0.15
19	A4-01	563.27	572.62	9.35	39.82	4.09	564.49	1.22
20	A4-02	563.91	573.16	9.25	35.86	6.04	564.50	0.59
21	A4-03	564.38	573.16	8.78	29.89	5.90	564.59	0.21
22	A4-04	564.63	574.34	9.71	23.56	0.00	564.83	0.20
23	A4-05	564.84	572.89	8.05	17.37	7.06	565.01	0.17
24	A4-06	565.29	572.92	7.63	10.29	4.37	565.42	0.13
25	A4-07	565.77	572.75	6.98	5.90	5.90	565.88	0.11
26	A5-01	564.91	574.34	9.43	6.08	0.00	565.04	0.13
27	A5-02	565.18	573.45	8.27	6.05	2.97	565.31	0.13
28	A5-03	565.60	573.26	7.66	3.07	3.07	565.69	0.09
29	A6-01	562.49	576.00	13.51	95.11	0.00	563.82	1.33

PIPES FOR STORM SEWER CALCULATIONS

SN	LINE	From (Inlet)	To (Outlet)	Length	Inlet	Outlet	Average	Pipe	Manning's
	ID	Node	Node		Invert	Invert	Slope	Diameter	Roughness
					Elevation	Elevation			
				(ft)	(ft)	(ft)	(%)	(inches)	
28	P-0	A-0	Out-02	44.65	562.96	562.00	2.1500	24.000	0.0130
13	P-1	A-01	A6-01	69.08	563.12	562.96	0.2300	48.000	0.0130
2	P-2	A-02	A-01	130.31	563.43	563.12	0.2400	48.000	0.0130
3	P-3	A-03	A-02	233.18	564.02	563.43	0.2500	48.000	0.0130
4	P-4	A-04	A-03	256.48	564.66	564.02	0.2500	48.000	0.0130
5	P-5	A-05	A-04	182.09	565.11	564.66	0.2500	42.000	0.0130
6	P-6	A-06	A-05	132.96	565.43	565.11	0.2400	42.000	0.0130
7	P-7	A-07	A-06	245.96	566.05	565.43	0.2500	42.000	0.0130
8	P-8	A-08	A-07	78.69	566.25	566.05	0.2500	36.000	0.0130
9	P-9	A-09	A-08	110.45	566.52	566.25	0.2500	36.000	0.0130
1	P-10	A-10	A-09	135.48	566.86	566.52	0.2500	30.000	0.0130
10	P-11	A1-01	A-09	148.86	566.89	566.52	0.2500	36.000	0.0130
11	P-12	A1-02	A1-01	47.30	567.01	566.89	0.2500	30.000	0.0130
22	P-13	A2-01	A-02	256.44	564.09	563.43	0.2600	36.000	0.0130
23	P-14	A2-02	A2-01	34.06	564.18	564.09	0.2700	36.000	0.0130
24	P-15	A2-03	A2-02	208.02	564.70	564.18	0.2500	36.000	0.0130
25	P-16	A2-04	A2-03	195.86	565.19	564.70	0.2500	30.000	0.0130
26	P-17	A2-05	A2-04	132.41	565.52	565.19	0.2500	24.000	0.0130
27	P-18	A3-01	A2-01	117.59	564.38	564.09	0.2500	30.000	0.0130
14	P-19	A4-01	A-01	61.01	563.27	563.12	0.2500	42.000	0.0130
12	P-20	A4-02	A4-01	256.44	563.91	563.27	0.2500	42.000	0.0130
31	P-21	A4-03	A4-02	187.23	564.38	563.91	0.2500	36.000	0.0130
15	P-22	A4-04	A4-03	101.61	564.63	564.38	0.2500	36.000	0.0130
16	P-23	A4-05	A4-04	83.80	564.84	564.63	0.2500	36.000	0.0130
17	P-24	A4-06	A4-05	180.43	565.29	564.84	0.2500	36.000	0.0130
18	P-25	A4-07	A4-06	191.32	565.77	565.29	0.2500	30.000	0.0130
19	P-26	A5-01	A4-04	113.93	564.91	564.63	0.2500	30.000	0.0130
20	P-27	A5-02	A5-01	106.04	565.18	564.91	0.2500	24.000	0.0130
21	P-28	A5-03	A5-02	167.00	565.60	565.18	0.2500	24.000	0.0130
29	P-29	A6-01	Out-01	56.66	562.43	558.00	7.8200	48.000	0.0150
30	P-30	A-0	A6-01	96.09	562.97	562.49	0.5000	48.000	0.0150

Summary for Subcatchment 1S: Main Site

Runoff = 17.23 cfs @ 12.10 hrs, Volume= 1.356 af, Depth= 0.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr WQv Rainfall=1.20"

16.505 98 Paved parking, HSG D 16.505 100.00% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) Description 2.3 158 0.0100 1.16 Sheet Flow, Smooth surfaces n= 0.011 P2= 3.30" 0.5 135 0.0025 4.18 20.51 Pipe Channel, 130-131 30.0" 30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63' n= 0.013 0.4 110 0.0025 4.72 33.35 Pipe Channel, 131-132 36.0" 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.013				cription	N Desc	(ac) C	Area			
16.505100.00% Impervious AreaTcLength (feet)Slope (ft/ft)Velocity (ft/sec)Capacity (cfs)Description2.31580.01001.16Sheet Flow, Smooth surfaces $n= 0.011$ P2= 3.30"0.51350.00254.1820.510.41100.00254.7233.350.41100.00254.7233.350.41100.00254.7233.350.41100.00254.7233.350.41100.00254.7233.350.41100.00254.7233.350.391pe Channel, 131-132 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.013			, HSG D	ed parking	8 Pave	505 9	16.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			16.505 100.00% Impervious Area							
2.31580.01001.16Sheet Flow, Smooth surfacesSmooth surfaces $n = 0.011$ $P2 = 3.30"$ 0.51350.00254.1820.51Pipe Channel, 130-131 $30.0"$ Round Area= 4.9 sf Perim= 7.9' r= 0.63' $n = 0.013$ 0.41100.00254.7233.35Pipe Channel, 131-132 $36.0"$ Round Area= 7.1 sf Perim= 9.4' r= 0.75' $n = 0.013$		Description	Capacity (cfs)	Velocity (ft/sec)	Slope (ft/ft)	Length (feet)	Tc (min)			
0.5 135 0.0025 4.18 20.51 Pipe Channel, 130-131 30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63' n= 0.013 0.4 110 0.0025 4.72 33.35 Pipe Channel, 131-132 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.013		Sheet Flow,		1.16	0.0100	158	2.3			
0.4 110 0.0025 4.72 33.35 Pipe Channel, 131-132 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.013		Smooth surfaces n= 0.011 P2= 3.30" Pipe Channel, 130-131 30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'	20.51	4.18	0.0025	135	0.5			
n= 0.013		n= 0.013 Pipe Channel, 131-132 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'	33.35	4.72	0.0025	110	0.4			
0.3 79 0.0025 4.72 33.35 Pipe Channel, 132-133 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'		n= 0.013 Pipe Channel, 132-133 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.013	33.35	4.72	0.0025	79	0.3			
0.8 246 0.0025 5.23 50.30 Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88	,	Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'	50.30	5.23	0.0025	246	0.8			
0.4 133 0.0025 5.23 50.30 Pipe Channel, 134-135 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88 n= 0.013	1	Pipe Channel, 134-135 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013	50.30	5.23	0.0025	133	0.4			
0.6 182 0.0025 5.23 50.30 Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88 n= 0.013	I	Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013	50.30	5.23	0.0025	182	0.6			
0.7 256 0.0025 5.72 71.82 Pipe Channel, 136-137 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.0 n= 0.013	0'	Pipe Channel, 136-137 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013	71.82	5.72	0.0025	256	0.7			
0.7 233 0.0025 5.72 71.82 Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.0	0'	Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013	71.82	5.72	0.0025	233	0.7			
0.4 130 0.0025 5.72 71.82 Pipe Channel, 138-139 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.0	0'	Pipe Channel, 138-139 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013	71.82	5.72	0.0025	130	0.4			
0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-Outlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.0 n= 0.013	0'	Pipe Channel, 139-Outlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013	71.82	5.72	0.0025	113	0.3			

7.4 1,775 Total

Summary for Subcatchment 10S: Forebay Area

Runoff = 0.09 cfs @ 12.09 hrs, Volume= 0.007 af, Depth= 0.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr WQv Rainfall=1.20"

Area (ac)	CN	Description						
0.268	80 >75% Grass cover, Good, HSG D							
0.086	98	Water Surface,	HSG D					
0.354	84	Weighted Avera	age					
0.268		75.71% Perviou	us Area					
0.086		24.29% Imperv	ious Area					
Tc Leng (min) (fee	ith s et)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description				
5.0				Direct Entry,				
Summary for Subcatchment 11S: Gravel WVTS								

Runoff = 0.55 cfs @ 12.08 hrs, Volume= 0.039 af, Depth= 0.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr WQv Rainfall=1.20"

Area	(ac)	CN	Desc	cription						
0.	605	98	Wate	Water Surface, HSG D						
0.	296	80	>75%	6 Grass co	over, Good	I, HSG D				
0.	228	77	Woo	ds, Good,	HSG D					
1.	129	89	Weig	phted Aver	age					
0.524 46.41% Pervious Area					us Area					
0.	0.605 53.59% Impervious Area				vious Area					
_			-		- ·					
Tc	Leng	th	Slope	Velocity	Capacity	Description				
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
5.0						Direct Entry,				

Summary for Subcatchment 12S: Subcat for Swale - 1

Runoff = 0.82 cfs @ 12.07 hrs, Volume= 0.057 af, Depth= 0.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr WQv Rainfall=1.20"

	Area (ac)	CN	Description
*	0.253	95	>75% Grass cover, Good, HSG C
*	0.665	95	Paved parking, HSG C
	0.918	95	Weighted Average
	0.918		100.00% Pervious Area

WQv	Type III 24-hr WQv Rainfall=1.20"
Prepared by HDR Inc	Printed 9/14/2017
HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions	LLC Page 4
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
5.0 993 0.1266 3.33 Lag/CN Method,	
Summary for Subcatchment 13	S: Pond
Runoff = 1.31 cfs @ 12.08 hrs, Volume= 0.090 a	af, Depth= 0.56"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= Type III 24-hr WQv Rainfall=1.20"	= 0.00-48.00 hrs, dt= 0.01 hrs
Area (ac) CN Description	
1.26198Water Surface, HSG C0.62480>75% Grass cover, Good, HSG D0.06477Woods, Good, HSG D	
1.94992Weighted Average0.68835.30% Pervious Area	
1.261 64.70% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
5.0 Direct Entry,	
Summary for Subcatchment 16S: DA t	o Entr. Culvert
Runoff = 0.12 cfs @ 12.51 hrs, Volume= 0.027 a	af, Depth= 0.10"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= Type III 24-hr WQv Rainfall=1.20"	= 0.00-48.00 hrs, dt= 0.01 hrs
Area (ac) CN Description	
3.168 77 Woods, Good, HSG D	
0.028 98 Paved parking, HSG D	

	0.	<u>028</u> 9	98 Pave	ed parking	, HSG D		
	3.	196 7	77 Wei	ghted Aver	age		
	3.	168	99.1	2% Pervio	us Area		
0.028 0.88% Impervious Area							
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	18.9	1,034	0.0359	0.91		Lag/CN Method,	
		· ·				0	

Summary for Subcatchment 18S: Subcat to Point B

Runoff = 1.40 cfs @ 12.93 hrs, Volume= 0.448 af, Depth= 0.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr WQv Rainfall=1.20"

WQv	Tj
Prepared by HDR Inc	
HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solution	ns LLC

	Area (ac)	CN	Desc	ription		
	52.205	77	Woo	ds, Good,	HSG D	
	0.898	98	Pave	ed parking,	HSG D	
	53.103	77	Weig	phted Aver	age	
52.205 98.31% Pervious Area				, 1% Pervio	us Area	
0.898 1.69% Impervious Area					ous Area	
	Tc Lenç	gth S	Slope	Velocity	Capacity	Description
	(min) (fe	et)	(ft/ft)	(ft/sec)	(cfs)	

(min) (feet) (ft/ft) (ft/sec) (cfs) 47.5 3,073 0.0324 1.08 Lag/CN Method,

Summary for Subcatchment 19S: Subcat for Swale - 2

Runoff = 0.54 cfs @ 12.03 hrs, Volume= 0.034 af, Depth= 0.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr WQv Rainfall=1.20"

	Area (ac)	CN	Desc	ription		
*	0.4	400	95	Wate	er Surface	, HSG C	
*	0.1	144	95	>75%	6 Grass co	over, Good,	, HSG C
	0.	544	95	Weig	phted Aver	age	
	0.544 100.00% Pervious Area					ous Area	
	Tc (min)	Lengt (feet	h (Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.0	31	3 0	.1239	2.62		Lag/CN Method,

Summary for Subcatchment 20S: Wetlands

Runoff = 0.29 cfs @ 12.54 hrs, Volume= 0.066 af, Depth= 0.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr WQv Rainfall=1.20"

Area (ac) C	N Des	cription						
7.7	773 7	77 Woo	ds, Good,	HSG D					
7.7	7.773 100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
20.6	1,002	0.0286	0.81		Lag/CN Method,				
			_						

Summary for Subcatchment 24S: DA for 25R

Runoff = 0.03 cfs @ 12.75 hrs, Volume= 0.008 af, Depth= 0.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr WQv Rainfall=1.20"

WQv	Type III 24-hr WQv Rainfall=1.20"
Prepared by HDR Inc	Printed 9/14/2017
HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions L	LC Page 6
Area (ac) CN Description	
0.916 77 Woods, Good, HSG D	
0.916 100.00% Pervious Area	
To Longth Clang Valgatty Canadity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
36.2 1,580 0.0192 0.73 Lag/CN Method,	
Summary for Subcatchment 25S: Rer	outed Area
Runoff = 0.05 cfs @ 12.49 hrs. Volume= 0.012 af	. Depth= 0.10"
	,
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span=	0.00-48.00 hrs, dt= 0.01 hrs
$Type III 24^{-11} W Q V Hallial = 1.20$	
Area (ac) CN Description	
1.380 77 Woods, Good, HSG D	
1.380 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
16.9 734 0.0260 0.73 Lag/CN Method,	
Summary for Subcatchment 26S: Subca	t for Swale - 2
······································	
Runoff = 0.34 cfs @ 12.03 hrs, Volume= 0.021 af	, Depth= 0.74"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= Type III 24-hr WQv Rainfall=1.20"	0.00-48.00 hrs, dt= 0.01 hrs
Area (ac) CN Description	
* 0.234 95 Paved parking, HSG D	
* 0.107 95 >75% Grass cover, Good, HSG C	
0.341 95 Weighted Average 0.341 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
1.9 293 0.1266 2.61 Lag/CN Method,	
Summary for Subcatchment 27S: DA	for Point F

Runoff = 0.14 cfs @ 12.86 hrs, Volume= 0.042 af, Depth= 0.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr WQv Rainfall=1.20"

WQv Prepare <u>HydroCA</u>	ed by HD D® 10.00	R Inc -19_s/n 05	5756 © 20 ⁻	16 HydroCA	<i>Type III 24-hr WQv Ra</i> Printe AD Software Solutions LLC	ainfall=1.20" d 9/14/2017 Page 7			
Area	(ac) C	N Desc	cription						
5	.040 7	'7 Woo	ds, Good,	HSG D					
5	.040	100.	00% Pervi	ous Area					
Tc (min) 44.0	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
Runoff	44.0 2,185 0.0219 0.83 Lag/CN Method, Summary for Subcatchment 29S: Rerouted Area B Bunoff = 0.04 cfs @ 12.44 brs. Volume= 0.007 af Depth= 0.10"								
Runoff b Type III	y SCS TF 24-hr WC	R-20 meth Qv Rainfa	nod, UH=S II=1.20"	SCS, Weigh	hted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01	hrs			
۸	roa (cf)		occription						

	14.3	599	0.0260	0.70		Lag/CN
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	L
	Тс	Lonath	Slone	Velocity	Canacity	
		37,749		100.00% Pe	ervious Are	ć
_		37,749	77	Woods, Go	od, HSG D	
_	A	rea (si)	CN	Description		

Summary for Subcatchment 34S: Subcat for Swale - 4

Runoff	=	0.26 cfs @	12.03 hrs,	Volume=	0.016 af, Depth= 0.74"	
--------	---	------------	------------	---------	------------------------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr WQv Rainfall=1.20"

	Area	(ac)	CN	Desc	ription		
*	0.	072	95	>75%	6 Grass co	over, Good	, HSG C
*	0.	189	95	Pave	ed parking,	, HSG C	
	0.	261	95	Weig	phted Aver	age	
	0.261			100.0	00% Pervi	ous Area	
	Tc (min)	Length (feet)	n S)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.9	292	2 0.	1265	2.61		Lag/CN Method,

Summary for Reach 8R: Level Spreader

Inflow Are	ea =	19.937 ac, 9	92.58% Impe	ervious,	Inflow Depth >	0.7	75" for W0	Qv event
Inflow	=	1.24 cfs @	16.31 hrs,	Volume	= 1.250	af		
Outflow	=	1.24 cfs @	16.32 hrs,	Volume	= 1.250	af,	Atten= 0%,	Lag= 0.9 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.50 fps, Min. Travel Time= 1.6 min Avg. Velocity = 0.31 fps, Avg. Travel Time= 2.6 min
WQv Typ Prepared by HDR Inc HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Peak Storage= 118 cf @ 16.32 hrs Average Depth at Peak Storage= 0.03' Bank-Full Depth= 1.00' Flow Area= 105.0 sf, Capacity= 439.80 cfs

75.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 30.0 '/' Top Width= 135.00' Length= 48.0' Slope= 0.0100 '/' Inlet Invert= 558.00', Outlet Invert= 557.52'

‡

Summary for Reach 15R: Dry Swale - 1

Inflow A	Area	a =	0.918 ac,	0.00% Impervious,	Inflow Depth =	0.7	'4" for WQv event	
Inflow		=	0.82 cfs @	12.07 hrs, Volume	÷= 0.057	af		
Outflov	N	=	0.62 cfs @	12.14 hrs, Volume	⊭ 0.057	af,	Atten= 25%, Lag= 3.9 m	nin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.76 fps, Min. Travel Time= 8.5 min Avg. Velocity = 0.59 fps, Avg. Travel Time= 25.6 min

Peak Storage= 317 cf @ 12.14 hrs Average Depth at Peak Storage= 0.15' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 87.10 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 904.0' Slope= 0.0190 '/' Inlet Invert= 572.17', Outlet Invert= 555.00'

Summary for Reach 18R: Dry Swale - 3

Inflow Area	a =	0.544 ac,	0.00% Impervious,	Inflow Depth =	0.74" foi	r WQv event
Inflow	=	0.54 cfs @	12.03 hrs, Volume	= 0.034 a	ıf	
Outflow	=	0.40 cfs @	12.09 hrs, Volume	= 0.034 a	If, Atten=	26%, Lag= 3.4 min

WQv Prepared by HDR Inc HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Type III 24-hr WQv Rainfall=1.20" Printed 9/14/2017 Page 9

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.18 fps, Min. Travel Time= 7.8 min Avg. Velocity = 0.42 fps, Avg. Travel Time= 22.1 min

Peak Storage= 187 cf @ 12.09 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 54.76 cfs

6.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 550.0' Slope= 0.0273 '/' Inlet Invert= 548.05', Outlet Invert= 533.01'

‡

Summary for Reach 20R: Dry Swale - 4

0.805 ac, 0.00% Impervious, Inflow Depth = 0.74" for WQv event Inflow Area = 0.62 cfs @ 12.06 hrs, Volume= Inflow 0.050 af = 0.59 cfs @ 12.09 hrs, Volume= 0.050 af, Atten= 4%, Lag= 1.7 min Outflow =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.44 fps, Min. Travel Time= 2.3 min Avg. Velocity = 0.46 fps, Avg. Travel Time= 7.2 min

Peak Storage= 81 cf @ 12.09 hrs Average Depth at Peak Storage= 0.17' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 66.01 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 198.0' Slope= 0.0109 '/' Inlet Invert= 532.35', Outlet Invert= 530.19'

Summary for Reach 21R: Point C

 Inflow Area =
 4.001 ac,
 0.70% Impervious,
 Inflow Depth =
 0.23"
 for WQv event

 Inflow =
 0.35 cfs @
 12.50 hrs,
 Volume=
 0.077 af

 Outflow =
 0.35 cfs @
 12.52 hrs,
 Volume=
 0.077 af,
 Atten= 0%,
 Lag= 1.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.90 fps, Min. Travel Time= 1.4 min Avg. Velocity = 0.55 fps, Avg. Travel Time= 2.3 min

Peak Storage= 30 cf @ 12.52 hrs Average Depth at Peak Storage= 0.04' Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 240.09 cfs

9.00' x 2.00' deep channel, n= 0.024 Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 77.4' Slope= 0.0136 '/' Inlet Invert= 526.65', Outlet Invert= 525.60'

‡

Summary for Reach 23R: Rerouting Ditch 1

Inflow /	Area	ι =	1.380 ac,	0.00% Impervious,	Inflow Depth = 0.7	10" for WQv event
Inflow		=	0.05 cfs @	12.49 hrs, Volume	= 0.012 af	
Outflov	v	=	0.05 cfs @	12.53 hrs, Volume	= 0.012 af,	Atten= 2%, Lag= 2.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.73 fps, Min. Travel Time= 3.9 min Avg. Velocity = 0.39 fps, Avg. Travel Time= 7.3 min

Peak Storage= 12 cf @ 12.53 hrs Average Depth at Peak Storage= 0.03' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 20.18 cfs

2.00' x 1.00' deep channel, n= 0.025 Earth, clean & winding Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 171.0' Slope= 0.0137 '/' Inlet Invert= 536.00', Outlet Invert= 533.66'

Summary for Reach 25R: Ditch

 Inflow Area =
 0.916 ac,
 0.00% Impervious,
 Inflow Depth =
 0.10"
 for WQv event

 Inflow =
 0.03 cfs @
 12.75 hrs,
 Volume=
 0.008 af

 Outflow =
 0.03 cfs @
 12.90 hrs,
 Volume=
 0.008 af,
 Atten= 6%,
 Lag= 8.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.45 fps, Min. Travel Time= 9.7 min Avg. Velocity = 0.35 fps, Avg. Travel Time= 12.5 min

Peak Storage= 15 cf @ 12.90 hrs Average Depth at Peak Storage= 0.03' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 60.53 cfs

2.00' x 2.00' deep channel, n= 0.025 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 262.2' Slope= 0.0064 '/' Inlet Invert= 540.67', Outlet Invert= 539.00'

Summary for Reach 29R: Dry Swale - 2

Inflow A	rea =	1.259 ac,	0.00% Impervious,	Inflow Depth = 0.7	74" for WQv event
Inflow	=	0.78 cfs @	12.10 hrs, Volume=	= 0.077 af	
Outflow	=	0.77 cfs @	12.14 hrs, Volume=	= 0.077 af,	Atten= 1%, Lag= 2.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.94 fps, Min. Travel Time= 2.3 min Avg. Velocity = 0.64 fps, Avg. Travel Time= 7.1 min

Peak Storage= 108 cf @ 12.14 hrs Average Depth at Peak Storage= 0.17' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 90.04 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 273.0' Slope= 0.0203 '/' Inlet Invert= 553.62', Outlet Invert= 548.08'

Summary for Reach 30R: Rerouted Ditch below Culvert

Inflow Area = 2.247 ac, 0.00% Impervious, Inflow Depth = 0.10" for WQv event Inflow 0.09 cfs @ 12.50 hrs, Volume= 0.019 af = 0.09 cfs @ 12.54 hrs, Volume= Outflow 0.019 af, Atten= 1%, Lag= 2.3 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.00 fps, Min. Travel Time= 3.5 min Avg. Velocity = 0.53 fps, Avg. Travel Time= 6.7 min Peak Storage= 18 cf @ 12.54 hrs Average Depth at Peak Storage= 0.04' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 25.17 cfs 2.00' x 1.00' deep channel, n= 0.013 Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 212.0' Slope= 0.0058 '/' Inlet Invert= 533.54', Outlet Invert= 532.32'

Summary for Pond 2P: Forebay

Inflow Area =	16.859 ac, 98.41% Impervious, Inflow	Depth = 0.97" for WQv event
Inflow =	17.32 cfs @ 12.10 hrs, Volume=	1.363 af
Outflow =	5.10 cfs @ 12.41 hrs, Volume=	1.360 af, Atten= 71%, Lag= 18.4 min
Primary =	5.10 cfs @ 12.41 hrs, Volume=	1.360 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 3,802 sf Storage= 3,789 cf Peak Elev= 564.50' @ 12.45 hrs Surf.Area= 5,436 sf Storage= 19,882 cf (16,094 cf above start) Flood Elev= 568.00' Surf.Area= 7,249 sf Storage= 42,057 cf (38,268 cf above start)

Plug-Flow detention time= 101.4 min calculated for 1.273 af (93% of inflow) Center-of-Mass det. time= 42.5 min (826.4 - 783.9)

Volume	Invert	Avail.Storage	Storage Description
#1	558.00'	49,579 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Prepared by HDR Inc

HydroCA	<u>D® 10.00-1</u>	9 s/n 05756	© 2016 I	HydroCAD	Software Solutions I	LLC	Page 13
Elevatio	on S	Surf.Area	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
558.0 559.0)0)0	2,536 2,944	269.1 279.8	0.0 40.0	0 1,095	0 1,095	2,536 3,078
560.0 561.0)0)0	3,366 3,802	290.5 301.2	40.0 40.0	1,261 1,433	2,356 3,789 7,814	3,641 4,225 4,825
562.0 563.0 564.0)0)0)0	4,252 4,716 5,194	312.0 322.7 333.4	100.0 100.0 100.0	4,025 4,482 4,953	12,296 17,249	4,835 5,462 6,110
565.0 566.0	00 00	5,687 6,193	344.1 354.8	100.0 100.0	5,439 5,938	22,687 28,626	6,779 7,469
567.0 568.0 569.0)0)0)0	6,714 7,249 7,798	365.5 376.2 386.9	100.0 100.0 100.0	6,452 6,980 7,522	35,077 42,057 49,579	8,180 8,912 9,666
Device	Routing	Inve	rt Outle	et Devices	8		
#1	Primary	558.00	0' 12.0' L= 2 Inlet n= 0	" Round 0.0' CPP / Outlet Ir .013. Flov	Culvert P, projecting, no hea nvert= 558.00' / 558 w Area= 0.79 sf	adwall, Ke= 0.900 3.00' S= 0.0000 '/'	Cc= 0.900
#2	Secondar	y 565.00	0' 60.0 ' 3.0' (' long Sha Crest Heig	arp-Crested Rectar	ngular Weir 2 End	d Contraction(s)

Primary OutFlow Max=5.10 cfs @ 12.41 hrs HW=564.49' TW=561.57' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 5.10 cfs @ 6.49 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=561.00' TW=561.00' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 3P: Gravel WVTS

Inflow Area =	17.988 ac, 95.60% Impervious, Inflow	Depth > 0.93" for WQv event
Inflow =	5.31 cfs @ 12.36 hrs, Volume=	1.399 af
Outflow =	3.31 cfs @ 13.42 hrs, Volume=	1.384 af, Atten= 38%, Lag= 63.8 min
Primary =	3.31 cfs @ 13.42 hrs, Volume=	1.384 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 22,959 sf Storage= 27,438 cf Peak Elev= 561.77' @ 13.42 hrs Surf.Area= 23,705 sf Storage= 45,310 cf (17,872 cf above start) Flood Elev= 568.00' Surf.Area= 30,084 sf Storage= 212,684 cf (185,246 cf above start)

Plug-Flow detention time= 413.2 min calculated for 0.754 af (54% of inflow) Center-of-Mass det. time= 130.8 min (958.1 - 827.3)

Volume	Invert	Avail.Storage	Storage Description
#1	558.00'	243,305 cf	Custom Stage Data (Irregular) Listed below (Recalc)

565.00

566.00

567.00

HydroCAD® 10	Page 14					
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>
558.00	22,771	626.2	0.0	0	0	22,771
559.00	22,834	626.9	40.0	9,121	9,121	23,401
560.00	22,897	627.7	40.0	9,146	18,267	24,034
561.00	22,959	628.5	40.0	9,171	27,438	24,667
562.00	23,935	639.2	100.0	23,445	50,884	25,919
563.00	24,924	649.9	100.0	24,428	75,312	27,192
564.00	25,928	660.6	100.0	25,424	100,736	28,486

Prepared by HDR Inc

671.3 100.0

100.0

100.0

682.1

692.8

29,801

31,146

32,504

568.00 569.00		30,084 31,161	703.5 714.3	100.0 100.0	29,552 30,621	212,684 243,305	33,883 35,293
Device	Routing	Invert	Outle	et Devices			
#1	Primary	558.00'	36.0'	' Round C	ulvert		
			L= 20 Inlet n= 0	0.0' CMP, / Outlet Inv 013 Flow	square edge headv ert= 558.00' / 558.0 Area= 7 07 sf	wall, Ke= 0.500 00' S= 0.0000 '/'	Cc= 0.900
#2	Device 1	561.00'	12.0'	' Vert. Orifi	ce/Grate X 2.00	C= 0.600	
#3	Device 2	558.00'	12.0'	' Vert. Orifi	ce/Grate C= 0.60	00	
#4	Device 1	562.50'	60.0' Limit	' x 30.0" Ho ed to weir f	oriz. Orifice/Grate	C= 0.600	
#5	Device 2	562.50'	60.0' Limit	' x 30.0'' Ho ed to weir f	oriz. Orifice/Grate	C= 0.600	
#6	Secondary	564.00'	100.0 5.0' ()' long Sha Crest Heigh	rp-Crested Rectan	igular Weir 2 En	d Contraction(s)

26,436

27,461

28,499

127,172

154,633

183,132

Primary OutFlow Max=3.31 cfs @ 13.42 hrs HW=561.77' TW=558.41' (Dynamic Tailwater)

1=Culvert (Passes 3.31 cfs of 42.23 cfs potential flow)

-2=Orifice/Grate (Passes 3.31 cfs of 3.85 cfs potential flow)

-3=Orifice/Grate (Orifice Controls 3.31 cfs @ 4.21 fps)

-5=Orifice/Grate (Controls 0.00 cfs)

26,947

27,978

29,024

-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=561.00' TW=558.00' (Dynamic Tailwater) -6=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4P: DP-1

Inflow Area =	19.937 ac, 92.58% Impervious, Inflow	w Depth > 0.89" for WQv event
Inflow =	3.42 cfs @ 13.37 hrs, Volume=	1.474 af
Outflow =	1.24 cfs @ 16.30 hrs, Volume=	1.251 af, Atten= 64%, Lag= 175.7 min
Primary =	1.24 cfs @ 16.30 hrs, Volume=	1.251 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 558.71' @ 16.30 hrs Surf.Area= 49,114 sf Storage= 34,309 cf Flood Elev= 565.00' Surf.Area= 62,400 sf Storage= 384,495 cf

Plug-Flow detention time= 492.3 min calculated for 1.250 af (85% of inflow)

Prepared by HDR Inc HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Volume Invert Avail.Storage Storage Description 558.00' 651,999 cf Custom Stage Data (Irregular) Listed below (Recalc) #1 Elevation Surf.Area Perim. Inc.Store Cum.Store Wet.Area (cubic-feet) (feet) (sq-ft) (feet) (cubic-feet) (sq-ft) 558.00 47,688 883.6 0 0 47.688 49.705 559.00 899.0 48.693 48.693 50.047 560.00 51,750 914.4 50,724 99,417 52,448 52,784 152,201 54.888 561.00 53,824 929.8 562.00 55,926 945.2 54,872 207,072 57,370 563.00 58,056 960.6 56,988 264,060 59,893 60,214 62.470 564.00 976.1 59.132 323.192 565.00 62.400 991.5 61.304 384.495 65.075 67,720 566.00 64,615 1,006.9 63,504 448,000 567.00 66,858 1,022.3 65,733 513,733 70,405 568.00 69,129 1,037.7 67,990 581,723 73,132 569.00 71,429 1,053.2 70,276 75,915 651,999 Outlet Devices Device Routing Invert 558.00' 48.0" Round Culvert #1 Primary L= 663.9' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 558.00' / 551.36' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 12.57 sf #2 **9.0" Vert. Orifice/Grate** C= 0.600 Device 1 558.00' **12.0" Vert. Orifice/Grate** C= 0.600 #3 Device 1 562.50' 45.0 deg x 100.0' long x 1.00' rise Sharp-Crested Vee/Trap Weir #4 Secondary 568.00' Cv= 2.56 (C= 3.20)

Center-of-Mass det. time= 396.7 min (1,347.5 - 950.7)

Primary OutFlow Max=1.24 cfs @ 16.30 hrs HW=558.71' TW=558.08' (Dynamic Tailwater) 1=Culvert (Passes 1.24 cfs of 1.57 cfs potential flow) 2=Orifice/Grate (Orifice Controls 1.24 cfs @ 2.87 fps) 3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=558.00' TW=0.00' (Dynamic Tailwater) 4=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Summary for Pond 13P: Det. Pond - 2

Inflow Area	ι =	1.259 ac,	0.00% Impervious,	Inflow Depth = 0.7	74" for WQv	event
Inflow	=	0.77 cfs @	12.14 hrs, Volume	= 0.077 af		
Outflow	=	0.08 cfs @	13.91 hrs, Volume	= 0.074 af,	Atten= 90%,	Lag= 106.2 min
Primary	=	0.08 cfs @	13.91 hrs, Volume	= 0.074 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 538.35' @ 13.91 hrs Surf.Area= 5,456 sf Storage= 1,839 cf Flood Elev= 541.00' Surf.Area= 8,791 sf Storage= 20,626 cf

Plug-Flow detention time= 381.1 min calculated for 0.074 af (96% of inflow) Center-of-Mass det. time= 357.9 min (1,192.5 - 834.6)

Prepared by HDR Inc

Type III 24-hr WQv Rainfall=1.20" Printed 9/14/2017

Page 16

HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Volume	Inve	rt Avail.S	Storage	Storage Descriptio	n		
#1	538.00	D' 20	,626 cf	Custom Stage Da	ta (Irregular) List	ed below (Recalc)	
Elevatic (fee	on s et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
538.0 539.0 540.0 541.0	00 00 00 00	5,054 6,243 7,489 8,791	387.0 405.8 424.7 423.9	0 5,638 6,857 8,131	0 5,638 12,495 20,626	5,054 6,305 7,621 8,049	
Device	Routing	Inve	ert Outle	et Devices			
#1	Primary	538.0	0' 15.0 ' L= 9 Inlet n= 0	" Round Culvert 4.0' CMP, square / Outlet Invert= 538 .013, Flow Area= 1	edge headwall, 1 8.00' / 537.00' S .23 sf	<e= 0.500<br="">= 0.0106 '/' Cc= 0.900</e=>	
#2 #3 #4	Device 1 Device 1 Device 1	538.00 538.90 539.50	0' 2.4'' 0' 4.0'' 0' 24.0 ' Limit	Vert. Orifice/Grate Vert. Orifice/Grate ' Horiz. Orifice/Gra red to weir flow at lo	C= 0.600 C= 0.600 te C= 0.600 w heads		

Primary OutFlow Max=0.08 cfs @ 13.91 hrs HW=538.35' TW=533.00' (Dynamic Tailwater)

2=Orifice/Grate (Orifice Controls 0.08 cfs @ 2.41 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 15P: Culvert at Entr.

Inflow Area	l =	4.001 ac,	0.70% Impervi	ious, Inflow I	Depth = 0.	23" for '	WQv event
Inflow	=	0.35 cfs @	12.50 hrs, Vo	olume=	0.077 af		
Outflow	=	0.35 cfs @	12.50 hrs, Vo	olume=	0.077 af,	Atten= 0°	%, Lag= 0.0 min
Primary	=	0.35 cfs @	12.50 hrs, Vo	olume=	0.077 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 527.35' @ 12.50 hrs Surf.Area= 11 sf Storage= 2 cf

Plug-Flow detention time= 0.2 min calculated for 0.077 af (100% of inflow) Center-of-Mass det. time= 0.1 min (880.1 - 880.0)

Volume	Invert	Avail.Storag	e Storag	e Description			
#1	527.17'	1,407	of Custor	n Stage Data	(Irregular) List	ed below (Recalc)	
Elevation (feet)	Surf.A (sc	rea Peri q-ft) (fe	m. et) (c	Inc.Store ubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
527.17		6 14	.0	0	0	6	
528.00		44 35	.0	18	18	90	
529.00	-	121 58	5.1	79	98	268	
530.00		266 92	.9	189	286	693	
531.00	Ę	555 117	.6	402	688	1,120	
532.00	8	397 157	.4	719	1,407	2,001	

Device	Routing	Invert	Outlet Devices
#1	Primary	527.17'	18.0" Round Culvert X 2.00
	2		L= 52.8' RCP, groove end w/headwall, Ke= 0.200
			Inlet / Outlet Invert= 527.17' / 526.65' S= 0.0098 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.77 sf
#2	Device 1	527.17'	18.0" W x 3.0" H Vert. Orifice/Grate C= 0.600
#3	Device 1	530.00'	72.0" x 72.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=0.35 cfs @ 12.50 hrs HW=527.35' TW=526.69' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.35 cfs @ 2.16 fps) 2=Orifice/Grate (Passes 0.35 cfs of 0.38 cfs potential flow)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 17P: Box Culvert for stream

Inflow Area	l =	57.525 ac,	1.56% Impervious, Inflow	<pre>/ Depth > 0.11" f</pre>	or WQv event
Inflow	=	1.54 cfs @	12.93 hrs, Volume=	0.549 af	
Outflow	=	1.54 cfs @	12.93 hrs, Volume=	0.549 af, Atten	= 0%, Lag= 0.0 min
Primary	=	1.54 cfs @	12.93 hrs, Volume=	0.549 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 533.00' @ 0.00 hrs Surf.Area= 412 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (1,015.4 - 1,015.4)

Volume	Inv	ert Ava	il.Storage	Storage Descripti	on		
#1	533.	00'	25,714 cf	Custom Stage Da	ata (Irregular) List	ted below (Recalc)	
Elevatio (fee	n t)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
533.0 534.0 535.0 536.0	00 00 00 00	412 5,210 11,714 18,774	159.8 513.7 795.5 996.6	0 2,362 8,245 15,106	0 2,362 10,608 25,714	412 19,382 48,748 77,441	
Device	Routing	Ir	vert Outle	et Devices			
#1	Primary	532	2.20' 144. L= 5 Inlet	0" W x 60.0" H Bo 1.5' CMP, square / Outlet Invert= 53	ox Culvert e edge headwall, I 2.20' / 530.66' S	≺e= 0.500 = 0.0299 '/' Cc= 0	0.900

n= 0.024, Flow Area= 60.00 sf

Primary OutFlow Max=0.00 cfs @ 12.93 hrs HW=533.00' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Passes 0.00 cfs of 27.56 cfs potential flow)

Summary for Pond 18P: Level Spreader

Inflow Area	ι =	19.937 ac, 9	92.58% Impe	ervious, li	nflow Depth >	0.75"	for WC	v event
Inflow	=	1.24 cfs @	16.30 hrs,	Volume=	1.251	af		
Outflow	=	1.24 cfs @	16.31 hrs,	Volume=	1.250	af, Atte	en= 0%,	Lag= 0.8 min
Primary	=	1.24 cfs @	16.31 hrs,	Volume=	1.250	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 558.00' Surf.Area= 2,625 sf Storage= 7,350 cf Peak Elev= 558.08' @ 16.31 hrs Surf.Area= 2,625 sf Storage= 7,435 cf (85 cf above start)

Plug-Flow detention time= 221.0 min calculated for 1.082 af (86% of inflow) Center-of-Mass det. time= 1.2 min (1,348.6 - 1,347.5)

Volume	Invert	Avail.Storage	Storage Description
#1	551.00'	8,400 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
551.00	2,625	0	0
556.00	2,625	13,125	13,125
557.00	2,625	2,625	15,750
558.00	2,625	2,625	18,375
559.00	2,625	2,625	21,000

Device	Routing	Invert	Outlet Devices		
#1	Primary	558.00'	75.0" x 35.0" Horiz. Orifice/Grate Limited to weir flow at low heads	C= 0.600	

Primary OutFlow Max=1.24 cfs @ 16.31 hrs HW=558.08' TW=558.03' (Dynamic Tailwater) 1=Orifice/Grate (Weir Controls 1.24 cfs @ 0.83 fps)

Summary for Pond 23P:

Inflow Area =	0.805 ac,	0.00% Impervious, Inflow E	Depth = 0.74"	for WQv event
Inflow =	0.59 cfs @	12.09 hrs, Volume=	0.050 af	
Outflow =	0.23 cfs @	12.44 hrs, Volume=	0.050 af, Atte	en= 61%, Lag= 21.1 min
Primary =	0.23 cfs @	12.44 hrs, Volume=	0.050 af	-
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 531.41' @ 12.44 hrs Surf.Area= 558 sf Storage= 317 cf

Plug-Flow detention time= 6.9 min calculated for 0.050 af (100% of inflow) Center-of-Mass det. time= 6.8 min (835.5 - 828.7)

Volume	Invert	Avail.Storage	Storage Description
#1	527.33'	793 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Prepared by HDR Inc

Page 19

Elevatio	on	Surf.Area	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
(fee	et)	(sq-ft)	(feet)	(%)	(cubic-feet)	(cubic-feet)	(sq-ft)
527.3	33	4	8.0	0.0	0	0	4
527.3	34	4	8.0	35.0	0	0	4
530.	16	4	8.0	35.0	4	4	27
530.	19	56	110.4	100.0	1	5	991
531.0	00	317	180.9	100.0	137	141	2,630
532.0	01	1,044	364.9	100.0	652	793	10,626
Device	Routing	Inve	rt Outle	et Devices			
#1	Primary	527.3	3' 2.5''	Round Cu	ulvert		
	2		L= 1	6.0' CPP,	square edge hea	dwall, Ke= 0.500	
			Inlet	/ Outlet Inv	vert= 527.33' / 527	7.17' S= 0.0100 '/'	Cc= 0.900
			n= 0	.013, Flow	/ Area= 0.03 sf		
#2	Seconda	ry 531.6	0' 30.0	deg x 7.7'	long x 0.40' rise	Sharp-Crested Vee	e/Trap Weir
		-	Cv=	2.61 (C= 3	.26)	-	-

Primary OutFlow Max=0.23 cfs @ 12.44 hrs HW=531.41' TW=527.35' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.23 cfs @ 6.83 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=527.33' TW=527.17' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Summary for Pond 24P: Flow Splitter

Inflow Area	=	16.505 ac,10	0.00% Impe	ervious, Inflow	Depth = 0.9	99" for WQv	v event
Inflow :	=	17.23 cfs @	12.10 hrs,	Volume=	1.356 af		
Outflow :	=	17.23 cfs @	12.10 hrs,	Volume=	1.356 af,	Atten= 0%, L	.ag= 0.0 min
Primary :	=	17.23 cfs @	12.10 hrs,	Volume=	1.356 af		
Secondary :	=	0.00 cfs @	0.00 hrs,	Volume=	0.000 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 565.26' @ 12.10 hrs

HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	562.96'	24.0" Round Culvert
	-		L= 44.7' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 562.96' / 562.00' S= 0.0215 '/' Cc= 0.900
			n= 0.013, Flow Area= 3.14 sf
#2	Secondary	562.96'	48.0" Round Culvert
			L= 106.2' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 562.96' / 562.43' S= 0.0050 '/' Cc= 0.900
			n= 0.013, Flow Area= 12.57 sf
#3	Device 2	565.70'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=17.21 cfs @ 12.10 hrs HW=565.25' TW=563.34' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 17.21 cfs @ 5.48 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=562.96' TW=558.00' (Dynamic Tailwater)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 28P: Ramp Culvert

Inflow Area	=	0.918 ac,	0.00% Impervious,	Inflow Depth = 0.	74" for WQv event
Inflow	=	0.62 cfs @	12.14 hrs, Volume=	= 0.057 af	
Outflow	=	0.62 cfs @	12.15 hrs, Volume=	= 0.056 af,	Atten= 0%, Lag= 0.4 min
Primary	=	0.62 cfs @	12.15 hrs, Volume=	= 0.056 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 555.27' @ 12.15 hrs Surf.Area= 108 sf Storage= 31 cf Flood Elev= 557.00' Surf.Area= 534 sf Storage= 342 cf

Plug-Flow detention time= 5.5 min calculated for 0.056 af (100% of inflow) Center-of-Mass det. time= 2.8 min (836.1 - 833.3)

Volume	Inv	ert Avai	I.Storage	Storage Descript	ion		
#1	554.	61'	342 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recalc)	
Elevatio (fee 554.6 555.0 556.0 556.3	on 91) 90 90 96	Surf.Area (sq-ft) 4 56 337 534	Perim. (feet) 8.0 45.8 150.1 184.0	Inc.Store (cubic-feet) 0 10 177 155	Cum.Store (cubic-feet) 0 10 187 342	Wet.Area (sq-ft) 4 166 1,795 2,698	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	555.00' 23.0' L= 3 Inlet n= 0		J" W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14 30.0' RCP, groove end projecting, Ke= 0.200 t / Outlet Invert= 555.00' / 553.62' S= 0.0460 '/' Cc= 0.900 0.013, Flow Area= 1.83 sf			

Primary OutFlow Max=0.62 cfs @ 12.15 hrs HW=555.27' TW=553.79' (Dynamic Tailwater) **1=RCP_Elliptical 23x14** (Inlet Controls 0.62 cfs @ 1.87 fps)

Summary for Pond 29P: Gravel Inlet Trench

Inflow Area	=	1.259 ac,	0.00% Impervious,	Inflow Depth = 0.	.74" for WQv event
Inflow	=	0.77 cfs @	12.14 hrs, Volume	= 0.077 af	
Outflow	=	0.77 cfs @	12.14 hrs, Volume	= 0.077 af,	, Atten= 0%, Lag= 0.0 min
Primary	=	0.77 cfs @	12.14 hrs, Volume	= 0.077 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 538.69' @ 12.14 hrs Surf.Area= 4 sf Storage= 1 cf

Plug-Flow detention time= 0.0 min calculated for 0.077 af (100% of inflow) Center-of-Mass det. time= 0.0 min (834.6 - 834.5)

Volume	Invert	Avail.Storage	Storage Description
#1	538.25'	14 cf	2.00'W x 2.00'L x 9.75'H Prismatoid
			39 cf Overall x 35.0% Voids

WQv	Type III 24-hr	WQv Rainfall=1.20"
Prepared by HDR Inc		Printed 9/14/2017
HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions L	LC	Page 21

Device	Routing	Invert	Outlet Devices
#1	Primary	538.25'	15.0'' Round Culvert L= 25.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 538.25' / 538.00' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=0.77 cfs @ 12.14 hrs HW=538.69' TW=538.17' (Dynamic Tailwater) ↓ 1=Culvert (Barrel Controls 0.77 cfs @ 2.98 fps)

Summary for Pond 30P: Culvert 2

Inflow Ar	rea =	1.380 ac,	0.00% Impervious,	Inflow Depth = 0 .	.10" for WQv event
Inflow	=	0.05 cfs @	12.53 hrs, Volume	= 0.012 af	
Outflow	=	0.05 cfs @	12.53 hrs, Volume	= 0.012 af,	, Atten= 0%, Lag= 0.0 min
Primary	=	0.05 cfs @	12.53 hrs, Volume	= 0.012 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 533.76' @ 12.53 hrs Flood Elev= 534.87'

Device	Routing	Invert	Outlet Devices
#1	Primary	533.66'	23.0" W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14
			Inlet / Outlet Invert= $533.66' / 533.54'$ S= $0.0050' /'$ Cc= 0.900 n= 0.013 , Flow Area= 1.83 sf

Primary OutFlow Max=0.05 cfs @ 12.53 hrs HW=533.76' TW=533.58' (Dynamic Tailwater) 1=RCP_Elliptical 23x14 (Barrel Controls 0.05 cfs @ 1.05 fps)

Summary for Pond 31P: Culvert 3

Inflow Area	=	0.544 ac,	0.00% Impervious,	Inflow Depth = $0.$	74" for WQv event
Inflow	=	0.40 cfs @	12.09 hrs, Volume	= 0.034 af	
Outflow	=	0.40 cfs @	12.09 hrs, Volume	= 0.034 af,	Atten= 0%, Lag= 0.0 min
Primary	=	0.40 cfs @	12.09 hrs, Volume	= 0.034 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 533.26' @ 12.09 hrs Flood Elev= 538.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	533.00'	23.0" W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14 L= 24.0' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 533.00' / 532.35' S= 0.0271 '/' Cc= 0.900 n= 0.013, Flow Area= 1.83 sf

Primary OutFlow Max=0.40 cfs @ 12.09 hrs HW=533.26' TW=532.52' (Dynamic Tailwater) **1=RCP_Elliptical 23x14** (Inlet Controls 0.40 cfs @ 1.29 fps)

WQv

Summary for Link 21L: Point A

Inflow /	Area	=	27.710 ac, (66.61% Impe	ervious,	Inflow Do	epth > 0).57"	for WC	Qv event	
Inflow		=	1.30 cfs @	16.04 hrs,	Volume	=	1.316 a	f			
Primar	y	=	1.30 cfs @	16.04 hrs,	Volume	=	1.316 a	f, Att	en= 0%,	Lag= 0.0) min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 22L: Point B

Inflow A	Area =	57.525 ac,	1.56% Impervious,	Inflow Depth > 0.7	11" for WQv event
Inflow	=	1.54 cfs @	12.93 hrs, Volume	= 0.549 af	
Primary	y =	1.54 cfs @	12.93 hrs, Volume	= 0.549 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 28L: Point F

Inflow Area	a =	5.040 ac,	0.00% Impervious,	Inflow Depth = 0.7	10" for WQv event
Inflow	=	0.14 cfs @	12.86 hrs, Volume	;= 0.042 af	
Primary	=	0.14 cfs @	12.86 hrs, Volume	⊭ 0.042 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Subcatchment 1S: Point A

Runoff = 6.50 cfs @ 12.44 hrs, Volume= 0.854 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area ((ac) C	N De	scription		
11.7	793	77 Wo	ods, Good,	HSG D	
11.	793	100).00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft	Velocity (ft/sec)	Capacity (cfs)	Description
29.0	1,588	0.0303	0.91	· · ·	Lag/CN Method,

Summary for Subcatchment 2S: Point B

Runoff = 28.94 cfs @ 12.69 hrs, Volume= 4.860 af, Depth= 0.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

A	rea (sf)	CN	Description		
2,6	78,932	77	Woods, Go	od, HSG D	
	81,040	98	Paved park	ing, HSG D	
2,7	59,972	78	Weighted A	verage	
2,6	78,932		97.06% Per	vious Area	1
	81,040		2.94% Impe	ervious Area	a
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description
48.6	3,073	0.029	1.05		Lag/CN Method,

Summary for Subcatchment 3S: Point C

Runoff = 2.89 cfs @ 12.29 hrs, Volume= 0.323 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area	(ac) C	N Des	cription		
4.	464	77 Wo	ods, Good,	HSG D	
4.	464	100	.00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.7	1,034	0.0331	0.88		Lag/CN Method,

Summary for Subcatchment 4S: Point D

Runoff = 45.55 cfs @ 12.49 hrs, Volume= 6.206 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area ((ac) C	CN De	escription		
85.	739	77 W	oods, Good	, HSG D	
85.	739	10	0.00% Perv	rious Area	
Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description
31.5	3,135	0.076	2 1.66		Lag/CN Method,
			_		

Summary for Subcatchment 5S: Point F

Runoff = 4.23 cfs @ 12.66 hrs, Volume= 0.680 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area	(ac) (CN	Desc	ription		
9.	400	77	Woo	ds, Good,	HSG D	
9.	9.400 100.00% Pervious Area					
Tc (min)	Length (feet)	S (lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
44.0	2,185	0.0)219	0.83		Lag/CN Method,

Summary for Subcatchment 1S: Point A

Runoff = 20.16 cfs @ 12.41 hrs, Volume= 2.496 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area (a	ac) C	N Des	cription		
11.7	'93 7	'7 Woo	ods, Good,	HSG D	
11.7	'93	100	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
29.0	1,588	0.0303	0.91		Lag/CN Method,

Summary for Subcatchment 2S: Point B

Runoff = 86.73 cfs @ 12.69 hrs, Volume= 13.871 af, Depth= 2.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

A	rea (sf)	CN	Description						
2,6	78,932	77	Woods, Go	od, HSG D					
	81,040	98	Paved park	Paved parking, HSG D					
2,7	59,972	78	Weighted A	verage					
2,6	78,932		97.06% Per	vious Area					
	81,040		2.94% Impe	ervious Area	a				
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description				
48.6	3,073	0.029	1.05		Lag/CN Method,				

Summary for Subcatchment 3S: Point C

Runoff = 9.01 cfs @ 12.28 hrs, Volume= 0.945 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area	(ac) C	N Des	cription		
4.	464	77 Wo	ods, Good,	HSG D	
4.	464	100	.00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.7	1,034	0.0331	0.88		Lag/CN Method,

Summary for Subcatchment 4S: Point D

Runoff = 140.96 cfs @ 12.43 hrs, Volume= 18.145 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area (a	ac) C	N Des	cription		
85.7	39 7	'7 Woo	ods, Good,	HSG D	
85.7	39	100	.00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
31.5	3,135	0.0762	1.66		Lag/CN Method,
			-		

Summary for Subcatchment 5S: Point F

Runoff = 13.08 cfs @ 12.61 hrs, Volume= 1.989 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area (a	ac) C	N De	scription		
9.4	100 7	77 Wo	ods, Good,	HSG D	
9.4	100	100).00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
44.0	2,185	0.0219	0.83		Lag/CN Method,

Summary for Subcatchment 1S: Point A

Runoff = 46.68 cfs @ 12.40 hrs, Volume= 5.818 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area	(ac) C	N De	escription		
11.	793	77 W	oods, Good	, HSG D	
11.	793	10	0.00% Perv	ious Area	
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description
29.0	1,588	0.030	3 0.91	· · ·	Lag/CN Method,

Summary for Subcatchment 2S: Point B

Runoff = 197.47 cfs @ 12.64 hrs, Volume= 31.899 af, Depth= 6.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Α	rea (sf)	CN	Description					
2,6	78,932	77	Woods, Go	od, HSG D				
	81,040	98	Paved park	ing, HSG D				
2,7	759,972	78	Weighted A	verage				
2,6	578,932		97.06% Pervious Area					
	81,040		2.94% Impe	ervious Area	a			
То	Longth	Slope	Volocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description			
48.6	3 073	0.0201	1 05	(010)	l ag/CN Method			
40.0	5,075	0.023	1.05		Lag/CN Method,			

Summary for Subcatchment 3S: Point C

Runoff = 20.85 cfs @ 12.27 hrs, Volume= 2.202 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area	(ac) C	N Des	cription		
4.	464	77 Wo	ods, Good,	HSG D	
4.	464	100	.00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.7	1,034	0.0331	0.88		Lag/CN Method,

Summary for Subcatchment 4S: Point D

Runoff = 327.06 cfs @ 12.43 hrs, Volume= 42.299 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area	a (ac)	CN	Desc	cription		
85	5.739	77	7 Woo	ds, Good,	HSG D	
85	5.739		100.	00% Pervi	ous Area	
Tc (min)	Leng (fee	ith et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
31.5	3,13	35	0.0762	1.66		Lag/CN Method,
				-		

Summary for Subcatchment 5S: Point F

Runoff = 30.37 cfs @ 12.57 hrs, Volume= 4.637 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area (a	ac) C	N De	scription		
9.4	100 7	77 Wo	ods, Good,	HSG D	
9.4	100	100).00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
44.0	2,185	0.0219	0.83		Lag/CN Method,

Summary for Subcatchment 1S: Main Site

Runoff = 41.05 cfs @ 12.10 hrs, Volume= 3.397 af, Depth= 2.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area	(ac) C	N Desc	cription				
16.	505 9	8 Pave	ed parking	, HSG D			
16.505 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
2.3	158	0.0100	1.16		Sheet Flow,		
0.5	135	0.0025	4.18	20.51	Smooth surfaces n= 0.011 P2= 3.30" Pipe Channel, 130-131 30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'		
0.4	110	0.0025	4.72	33.35	n= 0.013 Pipe Channel, 131-132 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'		
0.3	79	0.0025	4.72	33.35	n= 0.013 Pipe Channel, 132-133 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' p= 0.012		
0.8	246	0.0025	5.23	50.30	Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'		
0.4	133	0.0025	5.23	50.30	Pipe Channel, 134-135 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013		
0.6	182	0.0025	5.23	50.30	Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013		
0.7	256	0.0025	5.72	71.82	Pipe Channel, 136-137 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013		
0.7	233	0.0025	5.72	71.82	Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013		
0.4	130	0.0025	5.72	71.82	Pipe Channel, 138-139 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013		
0.3	113	0.0025	5.72	71.82	Pipe Channel, 139-Outlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013		

7.4 1,775 Total

Summary for Subcatchment 10S: Forebay Area

Runoff = 0.55 cfs @ 12.08 hrs, Volume= 0.038 af, Depth= 1.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area (ac)	CN	Description				
0.268	80	>75% Grass co	over, Good,	, HSG D		
0.086	98	Water Surface	, HSG D			
0.354	84	Weighted Aver	rage			
0.268		75.71% Pervio	us Area			
0.086		24.29% Imperv	24.29% Impervious Area			
Tc Leng (min) (fee	th s et)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description		
5.0				Direct Entry,		
		Summary	for Subca	atchment 11S: Gravel WVTS		

Runoff = 2.23 cfs @ 12.07 hrs, Volume= 0.153 af, Depth= 1.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area	(ac)	CN	Desc	cription			
0	.605	98	Wate	er Surface	, HSG D		
0	.296	80	>75%	6 Grass co	over, Good	d, HSG D	
0	.228	77	Woo	ds, Good,	HSG D		
1	.129	89	Weig	ghted Aver	age		
0	.524		46.4	1% Pervio	us Area		
0	.605		53.5	9% Imperv	vious Area		
-			~		• •		
IC	Leng	th	Slope	Velocity	Capacity	Description	
<u>(min)</u>	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
5.0						Direct Entry,	

Summary for Subcatchment 12S: Subcat for Swale - 1

Runoff = 1.91 cfs @ 12.09 hrs, Volume= 0.137 af, Depth= 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

	Area (ac)	CN	Description
	0.253	74	>75% Grass cover, Good, HSG C
*	0.665	98	Paved parking, HSG C
	0.918	91	Weighted Average
	0.253		27.56% Pervious Area
	0.665		72.44% Impervious Area

Tc (min)	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
6.0	993	6 0	.1266	2.77		Lag/CN Method,						
	Summary for Subcatchment 13S: Pond											
Runoff	=	4	4.39 cfs	s@ 12.0	7 hrs, Vol	ume= 0.305 af, Depth= 1.88"						
Runoff b Type III 2	y SCS 1 24-hr 1-	R-2 Yea	20 meth ar Rain	nod, UH=S fall=2.70"	SCS, Weig	hted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs						
Area	(ac)	CN	Desc	cription								
1.	261	98	Wate	er Surface	, HSG C							
0.	624	80	>75%	% Grass c	over, Good	d, HSG D						
0.	064	77	Woo	ds, Good,	HSG D							
1.	949	92	Weię	phted Ave	rage							
0.	688		35.3	0% Pervio	us Area							
1.	261		64.7	0% Imperv	vious Area							
Tc (min)	Length (feet)	ľ	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
5.0						Direct Entry,						

Summary for Subcatchment 16S: DA to Entr. Culvert

Runoff = 2.11 cfs @ 12.28 hrs, Volume=

0.231 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area	(ac)	CN	Desc	cription		
3.	168	77	Woo	ds, Good,	HSG D	
0.	028	98	Pave	ed parking	, HSG D	
3.	196	77	Weig	ghted Aver	age	
3.	168		99.1	2% Pervio	us Area	
0.	028		0.88	% Impervi	ous Area	
Tc	Lengt	h :	Slope	Velocity	Capacity	Description
(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
18.9	1,03	4 0	.0359	0.91		Lag/CN Method,
						-

Summary for Subcatchment 18S: Subcat to Box Culvert

Runoff = 22.91 cfs @ 12.72 hrs, Volume= 3.844 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Proposed

		•
Prepared by HDR Inc		
HydroCAD® 10.00-19 s/n 05756	© 2016 HydroCAD Software Solutions LI	L

Area	(ac)	CN	Desc	cription		
52.	205	77	Woo	ds, Good,	HSG D	
0.	.898	98	Pave	ed parking,	HSG D	
53.	103	77	Weig	phted Aver	age	
52.	205		98.3	1% Pervio	us Area	
0.	.898		1.69	% Impervie	ous Area	
Тс	Lengtl	n S	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
47.5	3,073	3 0.	0324	1.08		Lag/CN Method,
						-

Summary for Subcatchment 19S: Subcat for Swale - 3

Runoff = 1.35 cfs @ 12.03 hrs, Volume= 0.085 af, Depth= 1.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Summary for Subcatchment 20S: Wetlands

Runoff = 4.95 cfs @ 12.31 hrs, Volume= 0.563 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area	(ac) (CN	Desc	ription		
7.	773	77	Woo	ds, Good,	HSG D	
7.	773		100.0	00% Pervi	ous Area	
Tc (min)	Length (feet)	SI (lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
20.6	1,002	0.0)286	0.81		Lag/CN Method,

Summary for Subcatchment 23S: Point D

Runoff = 44.54 cfs @ 12.48 hrs, Volume= 6.047 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area	(ac) C	N Desc	cription							
83.	83.546 77 Woods, Good, HSG D									
83.	83.546 100.00% Pervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
31.3	3,135	0.0772	1.67		Lag/CN Method,					
	Summary for Subcatchment 24S: DA for 25R									
Runoff	=	0.46 cfs	s@ 12.5	5 hrs, Volu	ume= 0.066 af, Depth= 0.87"					
Runoff b Type III 2 Area	y SCS TF 24-hr 1-Y (ac) Cl	R-20 meth Tear Raint N Desc	nod, UH=S fall=2.70" cription	CS, Weigh	nted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs					
0.	916 7	7 Woo	ds, Good,	HSG D						
0.	916	100.	00% Pervi	ous Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
36.2	1,580	0.0192	0.73		Lag/CN Method,					
		Su	immary f	for Subca	atchment 25S: Rerouted Area					
Runoff	=	0.95 cfs	s@ 12.2	6 hrs, Volu	ume= 0.100 af, Depth= 0.87"					

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area	(ac) (CN	Desc	ription		
1.	380	77	Woo	ds, Good,	HSG D	
1.	380		100.0	00% Pervi	ous Area	
Tc (min)	Length (feet)	ı S	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
16.9	734	0.	0260	0.73		Lag/CN Method,

Summary for Subcatchment 26S: Subcat for Swale - 2

Runoff = 0.78 cfs @ 12.03 hrs, Volume= 0.049 af, Depth= 1.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

	Area ((ac)	CN	Desc	ription		
*	0.3	234	98	Pave	d parking,	HSG D	
	0.	107	74	>75%	6 Grass co	over, Good,	HSG C
	0.3	341	90	Weig	hted Aver	age	
	0.	107		31.38	3% Pervio	us Area	
	0.3	234		68.62	2% Imperv	ious Area	
	Tc (min)	Length (feet	n S) (lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.3	293	3 0.1	266	2.08		Lag/CN Method,

Summary for Subcatchment 27S: DA for Point F

Runoff = 2.27 cfs @ 12.66 hrs, Volume= 0.365 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

_	Area	(ac) C	N Des	cription			
	5.	040 7	77 Woo	ds, Good,	HSG D		
	5.	040	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	44.0	2,185	0.0219	0.83		Lag/CN Method.	

Summary for Subcatchment 29S: Rerouted Area B

Runoff = 0.64 cfs @ 12.21 hrs, Volume= 0.063 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

Area	(ac) C	N Des	cription		
0.	867 7	77 Wo	ods, Good,	HSG D	
0.	867	100	.00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.3	599	0.0260	0.70		Lag/CN Method,

Summary for Subcatchment 34S: Subcat for Swale - 4

Runoff = 0.62 cfs @ 12.03 hrs, Volume= 0.039 af, Depth= 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.70"

	Area	(ac)	CN	Desc	ription		
*	0.	072	74	>75%	6 Grass co	over, Good,	, HSG C
*	0.	189	98	Pave	ed parking,	HSG C	
	0.	261	91	Weig	phted Aver	age	
	0.	072		27.5	9% Pervio	us Area	
	0.	189		72.4 ⁻	1% Imperv	vious Area	
	Tc (min)	Length (feet	ר S)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.2	292	2 0.	1265	2.17		Lag/CN Method,

Summary for Reach 8R: Level Spreader

Inflow Area	a =	19.937 ac, 9	92.58% Impe	ervious,	Inflow	Depth >	2.1	5" for 1-Y	ear eve	nt
Inflow	=	2.16 cfs @	18.11 hrs,	Volume	=	3.578 a	af			
Outflow	=	2.16 cfs @	18.12 hrs,	Volume	=	3.578 a	af,	Atten= 0%,	Lag= 0.	8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.63 fps, Min. Travel Time= 1.3 min Avg. Velocity = 0.43 fps, Avg. Travel Time= 1.8 min

Peak Storage= 166 cf @ 18.12 hrs Average Depth at Peak Storage= 0.05' Bank-Full Depth= 1.00' Flow Area= 105.0 sf, Capacity= 439.80 cfs

75.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 30.0 '/' Top Width= 135.00' Length= 48.0' Slope= 0.0100 '/' Inlet Invert= 558.00', Outlet Invert= 557.52'

Summary for Reach 15R: Dry Swale - 1

Inflow Area	a =	0.918 ac, 7	2.44% Impe	ervious,	Inflow Depth	= 1.7	79" foi	r 1-Ye	ar event	
Inflow	=	1.91 cfs @	12.09 hrs,	Volume	= 0.13	37 af				
Outflow	=	1.58 cfs @	12.14 hrs,	Volume	= 0.13	37 af,	Atten=	18%,	Lag= 3.3 m	nin

ProposedType III 24-hr1-Year Rainfall=2.70"Prepared by HDR IncPrinted 9/14/2017HydroCAD® 10.00-19s/n 05756© 2016 HydroCAD Software Solutions LLCPage 9

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.40 fps, Min. Travel Time= 6.3 min Avg. Velocity = 0.72 fps, Avg. Travel Time= 21.0 min

Peak Storage= 595 cf @ 12.14 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 87.10 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 904.0' Slope= 0.0190 '/' Inlet Invert= 572.17', Outlet Invert= 555.00'

Summary for Reach 18R: Dry Swale - 3

Inflow Are	a =	0.544 ac, 73.53%	Impervious, Inflow I	Depth = 1.88"	for 1-Year event
Inflow	=	1.35 cfs @ 12.03	hrs, Volume=	0.085 af	
Outflow	=	1.11 cfs @ 12.08	hrs, Volume=	0.085 af, Atte	en= 18%, Lag= 2.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.75 fps, Min. Travel Time= 5.2 min Avg. Velocity = 0.48 fps, Avg. Travel Time= 19.2 min

Peak Storage= 349 cf @ 12.08 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 54.76 cfs

6.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 550.0' Slope= 0.0273 '/' Inlet Invert= 548.05', Outlet Invert= 533.01'

‡

Summary for Reach 20R: Dry Swale - 4

 Inflow Area =
 0.805 ac, 73.17% Impervious, Inflow Depth =
 1.85" for 1-Year event

 Inflow =
 1.66 cfs @
 12.06 hrs, Volume=
 0.124 af

 Outflow =
 1.61 cfs @
 12.08 hrs, Volume=
 0.124 af, Atten= 3%, Lag= 1.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.99 fps, Min. Travel Time= 1.7 min Avg. Velocity = 0.57 fps, Avg. Travel Time= 5.7 min

Peak Storage= 160 cf @ 12.08 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 66.01 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 198.0' Slope= 0.0109 '/' Inlet Invert= 532.35', Outlet Invert= 530.19'

Summary for Reach 21R: Point C

Inflow A	rea =	4.001 ac, 15.42% Impervious, Inflow	Depth = 1.07"	for 1-Year event
Inflow	=	2.88 cfs @ 12.31 hrs, Volume=	0.356 af	
Outflow	=	2.88 cfs @ 12.31 hrs, Volume=	0.356 af, Atte	n= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.02 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.67 fps, Avg. Travel Time= 1.9 min

Peak Storage= 110 cf @ 12.31 hrs Average Depth at Peak Storage= 0.15' Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 240.09 cfs

9.00' x 2.00' deep channel, n= 0.024 Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 77.4' Slope= 0.0136 '/' Inlet Invert= 526.65', Outlet Invert= 525.60'

‡

Summary for Reach 23R: Rerouting Ditch 1

 Inflow Area =
 1.380 ac,
 0.00% Impervious,
 Inflow Depth =
 0.87"
 for
 1-Year event

 Inflow =
 0.95 cfs @
 12.26 hrs,
 Volume=
 0.100 af

 Outflow =
 0.95 cfs @
 12.27 hrs,
 Volume=
 0.100 af,
 Atten= 0%,
 Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.06 fps, Min. Travel Time= 1.4 min Avg. Velocity = 0.73 fps, Avg. Travel Time= 3.9 min

Peak Storage= 79 cf @ 12.27 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 20.18 cfs

2.00' x 1.00' deep channel, n= 0.025 Earth, clean & winding Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 171.0' Slope= 0.0137 '/' Inlet Invert= 536.00', Outlet Invert= 533.66'

Summary for Reach 25R: Ditch

Inflow A	Area =	=	0.916 ac,	0.00% Impe	rvious,	Inflow Depth =	0.8	37" for 1-ነ	ear event
Inflow	=		0.46 cfs @	12.55 hrs,	Volume	= 0.066	af		
Outflow	/ =		0.45 cfs @	12.59 hrs,	Volume	= 0.066	af,	Atten= 1%,	Lag= 2.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.25 fps, Min. Travel Time= 3.5 min Avg. Velocity = 0.51 fps, Avg. Travel Time= 8.6 min

Peak Storage= 95 cf @ 12.59 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 60.53 cfs

2.00' x 2.00' deep channel, n= 0.025 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 262.2' Slope= 0.0064 '/' Inlet Invert= 540.67', Outlet Invert= 539.00'

Summary for Reach 29R: Dry Swale - 2

 Inflow Area =
 1.259 ac, 71.41% Impervious, Inflow Depth =
 1.77" for 1-Year event

 Inflow =
 1.96 cfs @
 12.11 hrs, Volume=
 0.186 af

 Outflow =
 1.94 cfs @
 12.14 hrs, Volume=
 0.186 af, Atten= 1%, Lag= 1.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.62 fps, Min. Travel Time= 1.7 min Avg. Velocity = 0.80 fps, Avg. Travel Time= 5.7 min

Peak Storage= 202 cf @ 12.14 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 90.04 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 273.0' Slope= 0.0203 '/' Inlet Invert= 553.62', Outlet Invert= 548.08'

Summary for Reach 30R: Rerouted Ditch below Culvert

Inflow /	Area	l =	2.247 ac,	0.00% Impervious,	Inflow Depth = 0.8	87" for 1-Year event
Inflow		=	1.56 cfs @	12.24 hrs, Volume	= 0.163 af	
Outflov	v	=	1.56 cfs @	12.26 hrs, Volume	= 0.163 af,	Atten= 0%, Lag= 0.9 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.81 fps, Min. Travel Time= 1.3 min Avg. Velocity = 0.99 fps, Avg. Travel Time= 3.6 min

Peak Storage= 117 cf @ 12.26 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 25.17 cfs

2.00' x 1.00' deep channel, n= 0.013 Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 212.0' Slope= 0.0058 '/' Inlet Invert= 533.54', Outlet Invert= 532.32'
Summary for Pond 2P: Forebay

Inflow Area	=	16.859 ac, 9	8.41% Impervi	ious, Inflow D	Depth =	2.21"	for 1-Ye	ar event
Inflow =	=	21.45 cfs @	12.10 hrs, Vo	olume=	3.107 a	af		
Outflow =	=	21.33 cfs @	12.11 hrs, Vo	olume=	3.105 a	af, Atte	n= 1%, l	_ag= 0.8 min
Primary =	=	5.53 cfs @	12.03 hrs, Vo	olume=	2.601 a	af		-
Secondary :	=	15.94 cfs @	12.11 hrs, Vo	olume=	0.503 a	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 3,802 sf Storage= 3,789 cf Peak Elev= 565.19' @ 12.11 hrs Surf.Area= 5,780 sf Storage= 23,758 cf (19,969 cf above start) Flood Elev= 568.00' Surf.Area= 7,249 sf Storage= 42,057 cf (38,268 cf above start)

Plug-Flow detention time= 74.0 min calculated for 3.018 af (97% of inflow) Center-of-Mass det. time= 41.1 min (806.9 - 765.8)

Volume	Invert	Avail.S	Storage	Storage D	escription		
#1	558.00'	49	,579 cf	Custom S	Stage Data (Irregu	lar) Listed below (F	Recalc)
Elevation (feet)	n Su	urf.Area (sq-ft)	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
558.00)	2,536	269.1	0.0	0		2,536
560.00)	2,944 3,366	279.8 290.5	40.0 40.0	1,095	2,356	3,641
561.00 562.00))	3,802 4,252	301.2 312.0	40.0 100.0	1,433 4,025	3,789 7,814	4,225 4,835
563.00 564.00)	4,716 5 194	322.7 333 4	100.0 100.0	4,482 4 953	12,296 17 249	5,462
565.00	,))	5,687	344.1	100.0	5,439	22,687	6,779
567.00)	6,714	365.5	100.0	6,452	35,077	8,180
568.00 569.00))	7,249 7,798	376.2 386.9	100.0 100.0	6,980 7,522	42,057 49,579	8,912 9,666
Device	Routing	Inve	rt Outle	et Devices			
#1	Primary	558.0	0' 12.0' L= 2 Inlet n= 0	" Round C 0.0' CPP, / Outlet Inv .013, Flow	Culvert projecting, no hea /ert= 558.00' / 558 v Area= 0.79 sf	adwall, Ke= 0.900 .00' S= 0.0000 '/'	Cc= 0.900
#2	Secondary	565.0	0' 60.0 ' 3.0' (' long Shar Crest Heigl	r p-Crested Rectar	ngular Weir 2 End	Contraction(s)

Primary OutFlow Max=5.52 cfs @ 12.03 hrs HW=565.14' TW=561.73' (Dynamic Tailwater) -1=Culvert (Inlet Controls 5.52 cfs @ 7.02 fps)

Secondary OutFlow Max=15.93 cfs @ 12.11 hrs HW=565.19' TW=561.96' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir (Weir Controls 15.93 cfs @ 1.42 fps)

Summary for Pond 3P: Gravel WVTS

Inflow Area	=	17.988 ac, 9	5.60% Impe	ervious, Inflow	Depth = 2.1	7" for 1-Ye	ar event
Inflow	=	23.38 cfs @	12.10 hrs,	Volume=	3.258 af		
Outflow	=	9.25 cfs @	12.54 hrs,	Volume=	3.242 af,	Atten= 60%,	Lag= 26.4 min
Primary	=	9.25 cfs @	12.54 hrs,	Volume=	3.242 af		-
Secondary	=	0.00 cfs @	0.00 hrs,	Volume=	0.000 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 22,959 sf Storage= 27,438 cf Peak Elev= 562.63' @ 12.54 hrs Surf.Area= 24,553 sf Storage= 66,078 cf (38,640 cf above start) Flood Elev= 568.00' Surf.Area= 30,084 sf Storage= 212,684 cf (185,246 cf above start)

Plug-Flow detention time= 272.0 min calculated for 2.611 af (80% of inflow) Center-of-Mass det. time= 119.1 min (926.5 - 807.4)

Volume	Invert	Avail.Sto	orage	Storage De	escription		
#1	558.00'	243,3	05 cf	Custom S	tage Data (Irregu	Ilar) Listed below (I	Recalc)
Elevation	n Si	urf.Area F	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
(feet))	(sq-ft)	(feet)	(%)	(cubic-feet)	(cubic-feet)	(sq-ft)
558.00)	22,771	626.2	0.0	0	0	22,771
559.00)	22,834	626.9	40.0	9,121	9,121	23,401
560.00)	22,897	627.7	40.0	9,146	18,267	24,034
561.00)	22,959	628.5	40.0	9,171	27,438	24,667
562.00)	23,935	639.2	100.0	23,445	50,884	25,919
563.00)	24,924	649.9	100.0	24,428	75,312	27,192
564.00)	25,928	660.6	100.0	25,424	100,736	28,486
565.00)	26,947	671.3	100.0	26,436	127,172	29,801
566.00)	27,978	682.1	100.0	27,461	154,633	31,146
567.00)	29,024	692.8	100.0	28,499	183,132	32,504
568.00)	30,084	703.5	100.0	29,552	212,684	33,883
569.00)	31,161	714.3	100.0	30,621	243,305	35,293
Device	Routing	Invert	Outle	et Devices			
#1	Primary	558.00'	36.0'	' Round C	ulvert		
			L= 2	0.0' CMP,	square edge hea	dwall, Ke= 0.500	
			Inlet	/ Outlet Inv	ert= 558.00' / 558	8.00' S= 0.0000 '/'	Cc= 0.900
			n= 0	.013, Flow	Area= 7.07 sf		
#2	Device 1	561.00'	12.0'	' Vert. Orifi	ce/Grate X 2.00	C= 0.600	
#3	Device 2	558.00'	12.0'	' Vert. Orifi	ce/Grate C= 0.	600	
#4	Device 1	562.50'	60.0'	' x 30.0'' Ho	oriz. Orifice/Grate	e C= 0.600	
			Limit	ed to weir f	low at low heads		
#5	Device 2	562.50'	60.0'	' x 30.0'' Ho	oriz. Orifice/Grate	e C= 0.600	
			Limit	ed to weir f	low at low heads		
#6	Secondary	564.00'	100.0 5.0' (0' long Sha Crest Heigh	rp-Crested Recta It	angular Weir 2 Er	nd Contraction(s)

Primary OutFlow Max=9.25 cfs @ 12.54 hrs HW=562.63' TW=559.01' (Dynamic Tailwater) 1=Culvert (Passes 9.25 cfs of 56.41 cfs potential flow) 2=Orifice/Grate (Passes 7.04 cfs of 8.03 cfs potential flow) 3=Orifice/Grate (Orifice Controls 4.82 cfs @ 6.14 fps) 5=Orifice/Grate (Weir Controls 2.21 cfs @ 1.16 fps) 4=Orifice/Grate (Weir Controls 2.21 cfs @ 1.16 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=561.00' TW=558.00' (Dynamic Tailwater) -6=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4P: DP-1

Inflow Area	=	19.937 ac, 9	2.58% Impe	rvious,	Inflow	Depth >	2.33	3" for	1-Ye	ar evei	nt
Inflow	=	27.87 cfs @	12.10 hrs, \	Volume	=	3.874	af				
Outflow	=	2.16 cfs @	18.10 hrs, \	Volume	=	3.579	af, <i>i</i>	Atten=	92%,	Lag= 3	360.1 mir
Primary	=	2.16 cfs @	18.10 hrs, \	Volume	=	3.579	af			•	
Secondary	=	0.00 cfs @	0.00 hrs, V	Volume	=	0.000	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 559.99' @ 18.10 hrs Surf.Area= 51,727 sf Storage= 98,834 cf Flood Elev= 565.00' Surf.Area= 62,400 sf Storage= 384,495 cf

Plug-Flow detention time= 594.7 min calculated for 3.579 af (92% of inflow) Center-of-Mass det. time= 542.5 min (1,442.6 - 900.0)

Volume	Inve	rt Avail	.Storage	Storage Description	n	
#1	558.0	0' 65	51,999 cf	Custom Stage Da	ta (Irregular) Liste	ed below (Recalc)
Elevation	:	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
558.00		47 688	883.6			47 688
559.00		49,705	899.0	48,693	48,693	50.047
560.00		51,750	914.4	50,724	99,417	52,448
561.00		53,824	929.8	52,784	152,201	54,888
562.00		55,926	945.2	54,872	207,072	57,370
563.00		58,056	960.6	56,988	264,060	59,893
564.00		60,214	976.1	59,132	323,192	62,470
565.00		62,400	991.5	61,304	384,495	65,075
566.00		64,615	1,006.9	63,504	448,000	67,720
567.00		66,858	1,022.3	65,733	513,733	70,405
568.00		69,129	1,037.7	67,990	581,723	73,132
569.00		71,429	1,053.2	70,276	651,999	75,915
Device I	Routing	Inv	vert Outle	et Devices		
#1 F	Primary	558.	00' 48.0 '	" Round Culvert		
	,		L= 6 Inlet n= 0	63.9' CMP, projec / Outlet Invert= 558 .013, Flow Area= 1	ting, no headwall, 3.00' / 551.36' S= '2.57 sf	Ke= 0.900 0.0100 '/' Cc= 0.900
#2 [#3 [Device 1 Device 1	558. 562.	00' 8.0'' 50' 12.0 '	Vert. Orifice/Grate "Vert. Orifice/Grate	C= 0.600 e C= 0.600	

ProposedType III 24-hr1-Year Rainfall=2.70"Prepared by HDR IncPrinted9/14/2017HydroCAD® 10.00-19s/n 05756© 2016 HydroCAD Software Solutions LLCPage 16

 #4
 Device 1
 566.00'
 60.0'' W x 60.0'' H Vert. Orifice/Grate
 C= 0.600

 #5
 Secondary
 567.00'
 45.0 deg x 100.0' long x 1.00' rise Sharp-Crested Vee/Trap Weir

 Cv= 2.56 (C= 3.20)
 Cv= 3.20)

Primary OutFlow Max=2.16 cfs @ 18.10 hrs HW=559.99' TW=558.12' (Dynamic Tailwater) **1=Culvert** (Passes 2.16 cfs of 18.79 cfs potential flow)

2=Orifice/Grate (Orifice Controls 2.16 cfs @ 6.20 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=558.00' TW=0.00' (Dynamic Tailwater) 5=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Summary for Pond 13P: Det. Pond - 2

Inflow Area	l =	1.259 ac, 7	'1.41% Impe	ervious, I	nflow Depth =	1.77"	for 1-Ye	ar event	
Inflow	=	1.94 cfs @	12.14 hrs,	Volume=	0.186	af			
Outflow	=	0.13 cfs @	14.75 hrs,	Volume=	. 0.181	af, Att	ten= 93%,	Lag= 156.4 r	nin
Primary	=	0.13 cfs @	14.75 hrs,	Volume=	. 0.181	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 538.86' @ 14.75 hrs Surf.Area= 6,074 sf Storage= 4,803 cf Flood Elev= 541.00' Surf.Area= 8,791 sf Storage= 20,626 cf

Plug-Flow detention time= 484.7 min calculated for 0.181 af (98% of inflow) Center-of-Mass det. time= 470.0 min (1,294.3 - 824.3)

Volume	Inv	ert Avail	.Storage	Storage Descriptio	n		
#1	538.0	00' 2	20,626 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)	
Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>	
538.0	00	5,054	387.0	0	0	5,054	
539.0	00	6,243	405.8	5,638	5,638	6,305	
540.0	00	7,489	424.7	6,857	12,495	7,621	
541.0	00	8,791	423.9	8,131	20,626	8,049	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	538.	00' 15.0'	" Round Culvert			
	-		L= 9	4.0' CMP, square	edge headwall, Ke	e= 0.500	
			Inlet	/ Outlet Invert= 538	3.00' / 537.00' S=	0.0106 '/' Cc= 0.900)
			n= 0	.013, Flow Area= 1	.23 sf		
#2	Device 1	538.	00' 2.4''	Vert. Orifice/Grate	C= 0.600		
#3	Device 1	538.	90' 4.0''	Vert. Orifice/Grate	C= 0.600		
#4	Device 1	539.	50' 24.0 '	" Horiz. Orifice/Gra	ate C= 0.600		
			Limit	ed to weir flow at lo	w heads		

Primary OutFlow Max=0.13 cfs @ 14.75 hrs HW=538.86' TW=533.00' (Dynamic Tailwater)

1-2=Orifice/Grate (Orifice Controls 0.13 cfs @ 4.21 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 15P: Culvert at Entr.

Inflow Area	ι =	4.001 ac, ⁻	15.42% Impe	ervious,	Inflow Dept	h= 1.0)7" for 1-Y	ear event
Inflow	=	3.00 cfs @	12.24 hrs,	Volume=	= 0.	356 af		
Outflow	=	2.88 cfs @	12.31 hrs,	Volume=	= 0.	356 af,	Atten= 4%,	Lag= 4.0 min
Primary	=	2.88 cfs @	12.31 hrs,	Volume=	= 0.	356 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 529.83' @ 12.31 hrs Surf.Area= 238 sf Storage= 245 cf

Plug-Flow detention time= 0.5 min calculated for 0.356 af (100% of inflow) Center-of-Mass det. time= 0.4 min (857.0 - 856.6)

Volume	Inve	ert Avai	I.Storage	Storage Descripti	on		
#1	527.1	7'	1,407 cf	Custom Stage Da	ata (Irregular) List	ted below (Recalc)	
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
527.17 528.00 529.00 530.00 531.00 532.00 Device	Routing	6 44 121 266 555 897	14.0 35.0 58.1 92.9 117.6 157.4 vert Outle	0 18 79 189 402 719 et Devices	0 18 98 286 688 1,407	6 90 268 693 1,120 2,001	
#1 #2 #3	Primary Device 1 Device 1	527 527 530	.17' 18.0 L= 5 Inlet n= 0 .17' 18.0 .00' 72.0 Limit	" Round Culvert 2 2.8' RCP, groove / Outlet Invert= 52 .013, Flow Area= " W x 3.0" H Vert. " x 72.0" Horiz. Or ted to weir flow at I	X 2.00 end w/headwall, 7.17' / 526.65' S 1.77 sf Orifice/Grate C ifice/Grate C= 0 ow heads	Ke= 0.200 = 0.0098 '/' Cc= 0 = 0.600 0.600	.900

Primary OutFlow Max=2.88 cfs @ 12.31 hrs HW=529.83' TW=526.80' (Dynamic Tailwater) 1=Culvert (Passes 2.88 cfs of 25.01 cfs potential flow) 2=Orifice/Grate (Orifice Controls 2.88 cfs @ 7.67 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 17P: Box Culvert for stream

Inflow Area	a =	57.525 ac,	3.12% Impervious, In	nflow Depth > 0.8	9" for 1-Year event
Inflow	=	24.02 cfs @	12.71 hrs, Volume=	4.254 af	
Outflow	=	24.02 cfs @	12.71 hrs, Volume=	4.254 af,	Atten= 0%, Lag= 0.0 min
Primary	=	24.02 cfs @	12.71 hrs, Volume=	4.254 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 533.00' @ 12.71 hrs Surf.Area= 413 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (916.8 - 916.8)

Volume	Inv	ert Avai	I.Storage	Storage Descripti	on		
#1	533.	00'	25,714 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
533.0 534.0 535.0 536.0	00 00 00 00	412 5,210 11,714 18,774	159.8 513.7 795.5 996.6	0 2,362 8,245 15,106	0 2,362 10,608 25,714	412 19,382 48,748 77,441	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	532	20' 144. L= 5 Inlet n= 0	0" W x 60.0" H Bo 1.5' CMP, square / Outlet Invert= 53 .024, Flow Area=	bx Culvert edge headwall, 22.20' / 530.66' S 60.00 sf	Ke= 0.500 = 0.0299 '/' Cc= 0	0.900

Primary OutFlow Max=27.58 cfs @ 12.71 hrs HW=533.00' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 27.58 cfs @ 2.87 fps)

Summary for Pond 18P: Level Spreader

Inflow Area	ι =	19.937 ac,	92.58% Imper	rvious, Inflow	Depth >	2.15"	for 1-Y	ear event
Inflow	=	2.16 cfs @	18.10 hrs, \	Volume=	3.579 a	af		
Outflow	=	2.16 cfs @	18.11 hrs, \	Volume=	3.578 a	af, Atte	en= 0%,	Lag= 0.6 min
Primary	=	2.16 cfs @	18.11 hrs, \	Volume=	3.578 a	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 558.00' Surf.Area= 2,625 sf Storage= 7,350 cf Peak Elev= 558.12' @ 18.11 hrs Surf.Area= 2,625 sf Storage= 7,473 cf (123 cf above start)

Plug-Flow detention time= 91.1 min calculated for 3.410 af (95% of inflow) Center-of-Mass det. time= 0.9 min (1,443.5 - 1,442.6)

Volume	Invert	Avail.Storage	Storage Description
#1	551.00'	8,400 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
			21,000 cf Overall x 40.0% Voids

Proposed

Prepared by HDR Inc		
HydroCAD® 10.00-19 s/n 05756	© 2016 HydroCAD	Software Solutions LL

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
551.00	2,625	0	0
556.00	2,625	13,125	13,125
557.00	2,625	2,625	15,750
558.00	2,625	2,625	18,375
559.00	2,625	2,625	21,000
Davias Daving	lovert	Outlet Devices	

Device	Routing	Invert	Outlet Devices	
#1	Primary	558.00'	75.0" x 35.0" Horiz. Orifice/Grate Limited to weir flow at low heads	C= 0.600

Primary OutFlow Max=2.16 cfs @ 18.11 hrs HW=558.12' TW=558.05' (Dynamic Tailwater) **1=Orifice/Grate** (Weir Controls 2.16 cfs @ 1.01 fps)

Summary for Pond 23P:

Inflow Area =	0.805 ac,	73.17% Impervious,	Inflow Depth = 1.8	5" for 1-Year event
Inflow =	1.61 cfs @	12.08 hrs, Volume	= 0.124 af	
Outflow =	1.56 cfs @	12.10 hrs, Volume	= 0.124 af,	Atten= 4%, Lag= 1.4 min
Primary =	0.23 cfs @	12.04 hrs, Volume	= 0.093 af	
Secondary =	1.36 cfs @	12.10 hrs, Volume	= 0.031 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 531.74' @ 12.10 hrs Surf.Area= 810 sf Storage= 546 cf

Plug-Flow detention time= 8.5 min calculated for 0.124 af (100% of inflow) Center-of-Mass det. time= 8.5 min (823.3 - 814.7)

Volume	Invert	t Avail.S	Storage	Storage D	escription				
#1	527.33	1	793 cf	Custom Stage Data (Irregular) Listed below (Recalc)					
Elevatior (feet)	n S)	urf.Area (sq-ft)	Perim. (feet)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
527.33 527.34 530.16 530.19 531.00 532.01	3 4 5 9)	4 4 56 317 1,044	8.0 8.0 110.4 180.9 364.9	0.0 35.0 35.0 100.0 100.0 100.0	0 0 4 1 137 652	0 0 4 5 141 793	4 27 991 2,630 10,626		
Device	Routing	Inve	ert Outle	et Devices					
#1 #2	Primary Secondary	527.3 v 531.6	3' 2.5'' L= 1 Inlet n= 0 0' 30.0 Cv=	Round Cu 6.0' CPP, / Outlet Inv .013, Flow deg x 7.7' 2.61 (C= 3	ulvert square edge head vert= 527.33' / 527 v Area= 0.03 sf long x 0.40' rise \$ 3.26)	dwall, Ke= 0.500 7.17' S= 0.0100 '/' Sharp-Crested Vee	Cc= 0.900 / Trap Weir		

Primary OutFlow Max=0.23 cfs @ 12.04 hrs HW=531.64' TW=527.66' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.23 cfs @ 6.79 fps)

Secondary OutFlow Max=1.35 cfs @ 12.10 hrs HW=531.74' TW=528.92' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Weir Controls 1.35 cfs @ 1.23 fps)

Summary for Pond 24P: Flow Splitter

Inflow Area	=	16.505 ac,10	0.00% Impe	ervious, Inflow	Depth = 2.4	7" for 1-Y	ear event
Inflow	=	41.05 cfs @	12.10 hrs,	Volume=	3.397 af		
Outflow	=	41.05 cfs @	12.10 hrs,	Volume=	3.397 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	20.93 cfs @	12.10 hrs,	Volume=	3.070 af		•
Secondary	=	20.12 cfs @	12.10 hrs,	Volume=	0.327 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 567.10' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	562.96'	24.0" Round Culvert
			L= 44.7' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 562.96' / 562.00' S= 0.0215 '/' Cc= 0.900
			n= 0.013, Flow Area= 3.14 sf
#2	Secondary	562.96'	48.0" Round Culvert
			L= 106.2' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 562.96' / 562.43' S= 0.0050 '/' Cc= 0.900
			n= 0.013, Flow Area= 12.57 sf
#3	Device 2	565.70'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=20.92 cfs @ 12.10 hrs HW=567.10' TW=565.19' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 20.92 cfs @ 6.66 fps)

Secondary OutFlow Max=20.10 cfs @ 12.10 hrs HW=567.10' TW=558.64' (Dynamic Tailwater) 2=Culvert (Passes 20.10 cfs of 76.05 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Weir Controls 20.10 cfs @ 3.87 fps)

Summary for Pond 28P: Ramp Culvert

Inflow Area	ι =	0.918 ac, 7	72.44% Impe	ervious,	Inflow Depth	= 1.7	9" for 1-Y	ear event
Inflow	=	1.58 cfs @	12.14 hrs,	Volume	= 0.1	37 af		
Outflow	=	1.58 cfs @	12.15 hrs,	Volume	= 0.1	37 af,	Atten= 0%,	Lag= 0.4 min
Primary	=	1.58 cfs @	12.15 hrs,	Volume	= 0.1	37 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 555.44' @ 12.15 hrs Surf.Area= 151 sf Storage= 54 cf Flood Elev= 557.00' Surf.Area= 534 sf Storage= 342 cf

Plug-Flow detention time= 2.7 min calculated for 0.137 af (100% of inflow) Center-of-Mass det. time= 1.6 min (824.3 - 822.7)

Proposed

Prepared by HDR Inc

Volume	Inv	ert Avail	.Storage	Storage Description	n		
#1	554.0	61'	342 cf	Custom Stage Da	ta (Irregular) Liste	ed below (Recalc)	
Elevatic (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
554.6	61	4	8.0	0	0	4	
555.0	0	56	45.8	10	10	166	
556.0	0	337	150.1	177	187	1,795	
556.3	86	534	184.0	155	342	2,698	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	555	.00' 23.0 L= 3 Inlet n= 0	"W x 14.0"H, R=2 0.0'RCP, groove / Outlet Invert= 55 .013, Flow Area= 1	2.0'' Elliptical RC end projecting, K 5.00' / 553.62' S= I.83 sf	P_Elliptical 23x14 e= 0.200 = 0.0460 '/' Cc= 0.900	

Primary OutFlow Max=1.57 cfs @ 12.15 hrs HW=555.44' TW=553.91' (Dynamic Tailwater) **1=RCP_Elliptical 23x14** (Inlet Controls 1.57 cfs @ 2.44 fps)

Summary for Pond 29P: Gravel Inlet Trench

Inflow Area	ι =	1.259 ac, 7	1.41% Impe	ervious,	Inflow Dep	oth =	1.77"	for 1-Y	ear event	
Inflow	=	1.94 cfs @	12.14 hrs,	Volume	= ().186 a	ıf			
Outflow	=	1.94 cfs @	12.14 hrs,	Volume	= ().186 a	af, Atte	n= 0%,	Lag= 0.0	min
Primary	=	1.94 cfs @	12.14 hrs,	Volume	= ().186 a	ıf			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 539.00' @ 12.14 hrs Surf.Area= 4 sf Storage= 1 cf

Plug-Flow detention time= 0.1 min calculated for 0.186 af (100% of inflow) Center-of-Mass det. time= 0.1 min (824.3 - 824.3)

Volume	Invert	Avail.Stor	age	Storage Description
#1	538.25'	1	4 cf	2.00'W x 2.00'L x 9.75'H Prismatoid 39 cf Overall x 35.0% Voids
Device	Routing	Invert	Outl	et Devices
#1	Primary	538.25'	15.0 L= 2 Inlet n= 0	" Round Culvert 5.0' RCP, square edge headwall, Ke= 0.500 / Outlet Invert= 538.25' / 538.00' S= 0.0100 '/' Cc= 0.900 .013, Flow Area= 1.23 sf

Primary OutFlow Max=1.94 cfs @ 12.14 hrs HW=539.00' TW=538.43' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.94 cfs @ 3.63 fps)

Summary for Pond 30P: Culvert 2

Inflow Area	ι =	1.380 ac,	0.00% Impervious,	Inflow Depth =	0.87" for	1-Year event
Inflow	=	0.95 cfs @	12.27 hrs, Volume	= 0.100	af	
Outflow	=	0.95 cfs @	12.27 hrs, Volume	= 0.100	af, Atten= 0)%, Lag= 0.0 min
Primary	=	0.95 cfs @	12.27 hrs, Volume	= 0.100	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 534.07' @ 12.27 hrs Flood Elev= 534.87'

Device	Routing	Invert	Outlet Devices
#1	Primary	533.66'	23.0" W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14 L= 24.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 533.66' / 533.54' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 1.83 sf

Primary OutFlow Max=0.95 cfs @ 12.27 hrs HW=534.07' TW=533.77' (Dynamic Tailwater) ←1=RCP_Elliptical 23x14 (Barrel Controls 0.95 cfs @ 2.33 fps)

Summary for Pond 31P: Culvert 3

Inflow Area	ι =	0.544 ac, 7	73.53% Impe	rvious, Inflow	Depth = 1.88	3" for 1-Y	ear event
Inflow	=	1.11 cfs @	12.08 hrs,	Volume=	0.085 af		
Outflow	=	1.11 cfs @	12.08 hrs,	Volume=	0.085 af, <i>I</i>	Atten= 0%,	Lag= 0.0 min
Primary	=	1.11 cfs @	12.08 hrs,	Volume=	0.085 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 533.44' @ 12.08 hrs Flood Elev= 538.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	533.00'	23.0" W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14
			L= 24.0' RCP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 533.00' / 532.35' S= 0.0271 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.83 sf

Primary OutFlow Max=1.11 cfs @ 12.08 hrs HW=533.44' TW=532.66' (Dynamic Tailwater) -1=RCP_Elliptical 23x14 (Inlet Controls 1.11 cfs @ 1.72 fps)

Summary for Link 21L: Point A

Inflow Are	ea =	27.710 ac, 6	6.61% Impe	ervious,	Inflow Depth	ı> 1.7	79" for 1-	-Year event
Inflow	=	6.18 cfs @	12.31 hrs,	Volume	= 4.1	40 af		
Primary	=	6.18 cfs @	12.31 hrs,	Volume	= 4.1	40 af,	Atten= 0%	, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 22L: Point B

Inflow /	Area	=	57.525 ac,	3.12% Impe	ervious,	Inflow Depth	> 0.8	39" for 1-Y	'ear event
Inflow	=	=	24.02 cfs @	12.71 hrs,	Volume	= 4.2	54 af		
Primar	y =	=	24.02 cfs @	12.71 hrs,	Volume	= 4.2	54 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 28L: Point F

Inflow A	rea =	5.040 ac,	0.00% Impervious,	Inflow Depth = 0.1	87" for 1-Year event
Inflow	=	2.27 cfs @	12.66 hrs, Volume	= 0.365 af	
Primary	=	2.27 cfs @	12.66 hrs, Volume	= 0.365 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Subcatchment 1S: Main Site

Runoff = 75.45 cfs @ 12.10 hrs, Volume= 6.414 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area	(ac) C	N Desc	cription		
16.	505 9	8 Pave	ed parking	, HSG D	
16.	505	100.	00% Impe	rvious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.3	158	0.0100	1.16		Sheet Flow,
0.5	135	0.0025	4.18	20.51	Smooth surfaces n= 0.011 P2= 3.30" Pipe Channel, 130-131 30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'
0.4	110	0.0025	4.72	33.35	n= 0.013 Pipe Channel, 131-132 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'
0.3	79	0.0025	4.72	33.35	n= 0.013 Pipe Channel, 132-133 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' p= 0.012
0.8	246	0.0025	5.23	50.30	Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'
0.4	133	0.0025	5.23	50.30	Pipe Channel, 134-135 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013
0.6	182	0.0025	5.23	50.30	Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013
0.7	256	0.0025	5.72	71.82	Pipe Channel, 136-137 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013
0.7	233	0.0025	5.72	71.82	Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013
0.4	130	0.0025	5.72	71.82	Pipe Channel, 138-139 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013
0.3	113	0.0025	5.72	71.82	Pipe Channel, 139-Outlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013

7.4 1,775 Total

Summary for Subcatchment 10S: Forebay Area

Runoff = 1.36 cfs @ 12.07 hrs, Volume= 0.094 af, Depth= 3.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area (ac)	CN	Description		
0.268	80	>75% Grass c	over, Good	, HSG D
0.086	98	Water Surface	e, HSG D	
0.354	84	Weighted Ave	rage	
0.268		75.71% Pervic	ous Area	
0.086		24.29% Imper	vious Area	
Tc Leng (min) (fee	ıth s et)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description
5.0				Direct Entry,
		Summary	for Subc	atchment 11S: Gravel WVTS

Runoff = 4.90 cfs @ 12.07 hrs, Volume= 0.346 af, Depth= 3.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area ((ac)	CN	Desc	ription		
0.0	605	98	Wate	er Surface	, HSG D	
0.2	296	80	>75%	6 Grass co	over, Good	I, HSG D
0.2	228	77	Woo	ds, Good,	HSG D	
1.	129	89	Weig	hted Aver	age	
0.5	524		46.4	1% Pervio	us Area	
0.0	605		53.59	9% Imperv	vious Area	
Tc	Lengt	h	Slope	Velocity	Capacity	Description
<u>(min)</u>	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
5.0						Direct Entry,
						•

Summary for Subcatchment 12S: Subcat for Swale - 1

Runoff = 4.01 cfs @ 12.08 hrs, Volume= 0.297 af, Depth= 3.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

	Area (ac)	CN	Description
	0.253	74	>75% Grass cover, Good, HSG C
*	0.665	98	Paved parking, HSG C
	0.918	91	Weighted Average
	0.253		27.56% Pervious Area
	0.665		72.44% Impervious Area

Tc (min)	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0	993	0	.1266	2.77		Lag/CN Method,				
	Summary for Subcatchment 13S: Pond									
Runoff	=	8	8.98 cfs	s@ 12.0	7 hrs, Vol	ume= 0.648 af, Depth= 3.99"				
Runoff by Type III 2	unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs ype III 24-hr 10-Year Rainfall=4.90"									
Area	(ac) (CN	Desc	cription						
1.	261	98	Wate	er Surface	, HSG C					
0.	624	80	>75%	% Grass c	over, Good	d, HSG D				
0.	064	77	Woo	ds, Good,	HSG D					
1.	949	92	Weig	phted Ave	rage					
0.	688		35.3	0% Pervic	ous Area					
1.	261		64.7	0% Imper	vious Area					
Tc (min)	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0						Direct Entry,				

Summary for Subcatchment 16S: DA to Entr. Culvert

Runoff = 6.55 cfs @ 12.26 hrs, Volume=

0.676 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area	(ac)	CN	Desc	cription			
3.	168	77	Woo	ds, Good,	HSG D		
0.	.028	98	Pave	ed parking,	HSG D		
3.	196	77	Weig	ghted Aver	age		
3.	3.168 99.12% Pervious Area						
0.	.028		0.88	% Impervi	ous Area		
_							
Tc	Lengtl	n 8	Slope	Velocity	Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)		
18.9	1,034	4 0.	0359	0.91		Lag/CN Method,	
						-	

Summary for Subcatchment 18S: Subcat to Box Culvert

Runoff = 70.88 cfs @ 12.66 hrs, Volume= 11.238 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Proposed

 Type III 24-hr
 10-Year Rainfall=4.90"

 Printed
 9/14/2017

 s LLC
 Page 27

	51
Prepared by HDR Inc	
HydroCAD® 10.00-19 s/n 05756 © 20	16 HydroCAD Software Solutions LL

Area	(ac)	CN	Desc	ription		
52.	205	77	Woo	ds, Good,	HSG D	
0.	.898	98	Pave	ed parking,	HSG D	
53.	103	77	Weig	hted Aver	age	
52.	205		98.3 ⁻	1% Pervio	us Area	
0.	.898		1.699	% Impervio	ous Area	
Tc	Length	n S	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
47.5	3,073	3 0.	0324	1.08		Lag/CN Method,
						-

Summary for Subcatchment 19S: Subcat for Swale - 3

Runoff = 2.77 cfs @ 12.03 hrs, Volume= 0.181 af, Depth= 3.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

							-
	2.3	31	3 ().1239	2.27		Lag/CN Method,
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	Тс	Lengt	h	Slope	Velocity	Capacity	Description
	0.	100		70.00		100071100	
	0	400		73.5	3% Imperv	vious Area	
	0.	144		26.4	7% Pervio	us Area	
	0.	544	92	Weig	phted Aver	age	
*	0.	144	74	>75%	6 Grass co	over, Good,	, HSG C
	0.	400	98	Wate	er Surface	, HSG C	
	Area	(ac)	CN	Desc	cription		

Summary for Subcatchment 20S: Wetlands

Runoff = 15.41 cfs @ 12.29 hrs, Volume= 1.645 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area	(ac) (CN	Desc	ription				
7.	773	77	Woo	ds, Good,	HSG D			
7.	7.773 100.00% Pervious Area							
Tc (min)	Length (feet)	SI (lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
20.6	1,002	0.0)286	0.81		Lag/CN Method,		

Summary for Subcatchment 23S: Point D

Runoff = 137.55 cfs @ 12.44 hrs, Volume= 17.681 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area	(ac) C	N Desc	cription						
83.	546 7	7 Woo	ds, Good,	HSG D					
83.	546	100.0	00% Pervi	ous Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
31.3	3,135	0.0772	1.67		Lag/CN Method,				
	Summary for Subcatchment 24S: DA for 25R								
Runoff	=	1.41 cfs	s@ 12.5	1 hrs, Volu	ume= 0.194 af, Depth= 2.54"				
Runoff b Type III 2 Area	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"								
0.	916 7	7 Woo	ds, Good,	HSG D					
0.	916	100.0	00% Pervi	ous Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
36.2	1,580	0.0192	0.73		Lag/CN Method,				
	Summary for Subcatchment 25S: Rerouted Area								
Runoff	=	2.96 cfs	s@ 12.23	3 hrs, Volu	ume= 0.292 af, Depth= 2.54"				

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area	(ac) (CN De	scription					
1.	380	77 W	oods, Good,	HSG D				
1.	1.380 100.00% Pervious Area							
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description			
16.9	734	0.026	0.73		Lag/CN Method,			

Summary for Subcatchment 26S: Subcat for Swale - 2

Runoff = 1.67 cfs @ 12.03 hrs, Volume= 0.107 af, Depth= 3.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

	Area	(ac)	CN	Desc	ription		
*	0.	234	98	Pave	d parking,	HSG D	
	0.	107	74	>75%	6 Grass co	over, Good,	, HSG C
	0.	341	90	Weig	hted Aver	age	
	0.107 31.38% Pervious Area						
	0.234 68.62% Impervious Area				2% Imperv	vious Area	
	Tc (min)	Lengtł (feet	ר S) (lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.3	293	3 0.1	1266	2.08		Lag/CN Method,

Summary for Subcatchment 27S: DA for Point F

Runoff = 7.01 cfs @ 12.61 hrs, Volume= 1.067 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

 Area	(ac) C	N Des	cription			
5.	040	77 Woo	ds, Good,	HSG D		
5.	040	100.	00% Pervi	ous Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
44.0	2,185	0.0219	0.83		Lag/CN Method.	

Summary for Subcatchment 29S: Rerouted Area B

Runoff = 1.98 cfs @ 12.20 hrs, Volume= 0.183 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area	(ac) C	N Des	cription				
0.	867 7	77 Wo	ods, Good,	HSG D			
0.	0.867 100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
14.3	599	0.0260	0.70		Lag/CN Method,		

Summary for Subcatchment 34S: Subcat for Swale - 4

Runoff = 1.31 cfs @ 12.03 hrs, Volume= 0.084 af, Depth= 3.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area ((ac)	CN	Desc	ription		
0.	072	74	>75%	6 Grass co	over, Good,	, HSG C
0.	189	98	Pave	d parking,	, HSG C	
0.3	261	91	Weig	hted Aver	age	
0.072 27.59% Pervious Area						
0.	189		72.4 ⁻	1% Imperv	vious Area	
Тс	Length	n S	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.2	292	2 0.	1265	2.17		Lag/CN Method,
	Area (0. 0. 0. 0. 0. Tc (min) 2.2	Area (ac) 0.072 0.189 0.261 0.072 0.189 Tc Length (min) (feet 2.2 292	Area (ac) CN 0.072 74 0.189 98 0.261 91 0.072 0.189 Tc Length 9 (min) (feet) 9 2.2 292 0.5	Area (ac) CN Desc 0.072 74 >75% 0.189 98 Pave 0.261 91 Weig 0.072 27.5% 0.189 72.4% Tc Length Slope (min) (feet) (ft/ft) 2.2 292 0.1265	Area (ac) CN Description 0.072 74 >75% Grass co 0.189 98 Paved parking 0.261 91 Weighted Aver 0.072 27.59% Pervio 0.189 72.41% Impervio Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 2.2 292 0.1265 2.17	Area (ac)CNDescription0.07274>75% Grass cover, Good0.18998Paved parking, HSG C0.26191Weighted Average0.07227.59% Pervious Area0.18972.41% Impervious AreaTcLengthSlopeVelocityCapacity(ft/ft)(ft/sec)(cfs)2.22920.12652.17

Summary for Reach 8R: Level Spreader

Inflow Area	a =	19.937 ac, 9	92.58% Impe	ervious,	Inflow De	epth > 4	.16" fo	r 10-`	Year ever	nt
Inflow	=	3.08 cfs @	18.09 hrs,	Volume	=	6.915 af				
Outflow	=	3.08 cfs @	18.10 hrs,	Volume	=	6.913 af	, Atten=	0%,	Lag= 0.7	min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.72 fps, Min. Travel Time= 1.1 min Avg. Velocity = 0.57 fps, Avg. Travel Time= 1.4 min

Peak Storage= 206 cf @ 18.10 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 1.00' Flow Area= 105.0 sf, Capacity= 439.80 cfs

75.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 30.0 '/' Top Width= 135.00' Length= 48.0' Slope= 0.0100 '/' Inlet Invert= 558.00', Outlet Invert= 557.52'

Summary for Reach 15R: Dry Swale - 1

Inflow Area	a =	0.918 ac, 7	2.44% Impe	ervious,	Inflow Depth =	3.8	89" for	· 10-Y	ear evei	nt
Inflow	=	4.01 cfs @	12.08 hrs,	Volume	= 0.297	af				
Outflow	=	3.47 cfs @	12.13 hrs,	Volume	= 0.297	af,	Atten=	13%,	Lag= 2.	8 min

ProposedType III 24-hr10-Year Rainfall=4.90"Prepared by HDR IncPrinted9/14/2017HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLCPage 31

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.05 fps, Min. Travel Time= 4.9 min Avg. Velocity = 0.87 fps, Avg. Travel Time= 17.3 min

Peak Storage= 1,028 cf @ 12.13 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 87.10 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 904.0' Slope= 0.0190 '/' Inlet Invert= 572.17', Outlet Invert= 555.00'

Summary for Reach 18R: Dry Swale - 3

Inflow Ar	ea =	0.544 ac, 73.53% Impervious, Ir	flow Depth = 3.99"	for 10-Year event
Inflow	=	2.77 cfs @ 12.03 hrs, Volume=	0.181 af	
Outflow	=	2.41 cfs @ 12.07 hrs, Volume=	0.181 af, At	ten= 13%, Lag= 2.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.34 fps, Min. Travel Time= 3.9 min Avg. Velocity = 0.57 fps, Avg. Travel Time= 16.1 min

Peak Storage= 565 cf @ 12.07 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 54.76 cfs

6.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 550.0' Slope= 0.0273 '/' Inlet Invert= 548.05', Outlet Invert= 533.01'

‡

Summary for Reach 20R: Dry Swale - 4

 Inflow Area =
 0.805 ac, 73.17% Impervious, Inflow Depth =
 3.96" for 10-Year event

 Inflow =
 3.59 cfs @
 12.05 hrs, Volume=
 0.265 af

 Outflow =
 3.52 cfs @
 12.07 hrs, Volume=
 0.265 af, Atten= 2%, Lag= 1.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.52 fps, Min. Travel Time= 1.3 min Avg. Velocity = 0.70 fps, Avg. Travel Time= 4.7 min

Peak Storage= 277 cf @ 12.07 hrs Average Depth at Peak Storage= 0.47' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 66.01 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 198.0' Slope= 0.0109 '/' Inlet Invert= 532.35', Outlet Invert= 530.19'

Summary for Reach 21R: Point C

Inflow Area =4.001 ac, 15.42% Impervious, Inflow Depth =2.82" for 10-Year eventInflow =8.29 cfs @12.24 hrs, Volume =0.942 afOutflow =8.29 cfs @12.24 hrs, Volume =0.942 af, Atten = 0%, Lag = 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.00 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.85 fps, Avg. Travel Time= 1.5 min

Peak Storage= 214 cf @ 12.24 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 240.09 cfs

9.00' x 2.00' deep channel, n= 0.024 Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 77.4' Slope= 0.0136 '/' Inlet Invert= 526.65', Outlet Invert= 525.60'

‡

Summary for Reach 23R: Rerouting Ditch 1

 Inflow Area =
 1.380 ac, 0.00% Impervious, Inflow Depth = 2.54" for 10-Year event

 Inflow =
 2.96 cfs @ 12.23 hrs, Volume=
 0.292 af

 Outflow =
 2.95 cfs @ 12.24 hrs, Volume=
 0.292 af, Atten= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.94 fps, Min. Travel Time= 1.0 min Avg. Velocity = 0.98 fps, Avg. Travel Time= 2.9 min

Peak Storage= 172 cf @ 12.24 hrs Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 20.18 cfs

2.00' x 1.00' deep channel, n= 0.025 Earth, clean & winding Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 171.0' Slope= 0.0137 '/' Inlet Invert= 536.00', Outlet Invert= 533.66'

Summary for Reach 25R: Ditch

Inflow Are	a =	0.916 ac,	0.00% Impervious,	Inflow Depth = 2.5	54" for 10-Year event
Inflow	=	1.41 cfs @	12.51 hrs, Volume	= 0.194 af	
Outflow	=	1.40 cfs @	12.54 hrs, Volume	= 0.194 af,	Atten= 1%, Lag= 1.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.80 fps, Min. Travel Time= 2.4 min Avg. Velocity = 0.67 fps, Avg. Travel Time= 6.5 min

Peak Storage= 205 cf @ 12.54 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 60.53 cfs

2.00' x 2.00' deep channel, n= 0.025 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 262.2' Slope= 0.0064 '/' Inlet Invert= 540.67', Outlet Invert= 539.00'

Summary for Reach 29R: Dry Swale - 2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.33 fps, Min. Travel Time= 1.4 min Avg. Velocity = 0.98 fps, Avg. Travel Time= 4.7 min

Peak Storage= 353 cf @ 12.12 hrs Average Depth at Peak Storage= 0.45' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 90.04 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 273.0' Slope= 0.0203 '/' Inlet Invert= 553.62', Outlet Invert= 548.08'

Summary for Reach 30R: Rerouted Ditch below Culvert

Inflow /	Area	a =	2.247 ac,	0.00% Impervious,	Inflow Depth = 2	.54" for 10-Y	'ear event
Inflow		=	4.88 cfs @	12.22 hrs, Volume	= 0.476 af		
Outflov	v	=	4.87 cfs @	12.24 hrs, Volume	= 0.476 af	, Atten= 0%, I	_ag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.99 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.33 fps, Avg. Travel Time= 2.7 min

Peak Storage= 259 cf @ 12.24 hrs Average Depth at Peak Storage= 0.43' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 25.17 cfs

2.00' x 1.00' deep channel, n= 0.013 Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 212.0' Slope= 0.0058 '/' Inlet Invert= 533.54', Outlet Invert= 532.32'

Summary for Pond 2P: Forebay

Inflow Area	=	16.859 ac, 9	8.41% Impe	rvious, Inflow D	Depth =	3.79"	for 10-`	Year event
Inflow =	=	27.95 cfs @	12.10 hrs,	Volume=	5.323	af		
Outflow =	=	27.83 cfs @	12.11 hrs, '	Volume=	5.320	af, Att	en= 0%,	Lag= 0.7 min
Primary =	=	5.36 cfs @	11.70 hrs, '	Volume=	4.011	af		-
Secondary :	=	23.18 cfs @	12.11 hrs,	Volume=	1.309	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 3,802 sf Storage= 3,789 cf Peak Elev= 565.24' @ 12.11 hrs Surf.Area= 5,806 sf Storage= 24,063 cf (20,274 cf above start) Flood Elev= 568.00' Surf.Area= 7,249 sf Storage= 42,057 cf (38,268 cf above start)

Plug-Flow detention time= 63.1 min calculated for 5.232 af (98% of inflow) Center-of-Mass det. time= 41.9 min (797.7 - 755.8)

Volume	Invert	Avail.	Storage	Storage D	Description		
#1	558.00'	49	9,579 cf	Custom S	Stage Data (Irregu	lar) Listed below (F	Recalc)
Elevation	n Si	urf.Area	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
(leet	.)	(sq-it)	(leel)	(%)	(cubic-reet)	(cubic-leet)	(sq-11)
558.00	0	2,536	269.1	0.0	0	0	2,536
559.00	D	2,944	279.8	40.0	1,095	1,095	3,078
560.00	0	3,366	290.5	40.0	1,261	2,356	3,641
561.00	0	3,802	301.2	40.0	1,433	3,789	4,225
562.00	D	4,252	312.0	100.0	4,025	7,814	4,835
563.00	D	4,716	322.7	100.0	4,482	12,296	5,462
564.00	D	5,194	333.4	100.0	4,953	17,249	6,110
565.00	0	5,687	344.1	100.0	5,439	22,687	6,779
566.00	0	6.193	354.8	100.0	5,938	28,626	7,469
567.00	0	6.714	365.5	100.0	6.452	35,077	8,180
568.00	0	7.249	376.2	100.0	6,980	42,057	8,912
569.00	D	7,798	386.9	100.0	7,522	49,579	9,666
Device	Routing	Inve	ert Outle	et Devices			
#1	Primary	558.0	0' 12.0 '	" Round (Culvert		
	j		L= 2	0.0' CPP	projecting, no hea	adwall, Ke= 0.900	
			Inlet	/ Outlet In	vert= 558 00' / 558	$S_{00}' = S_{000} = 0.0000 '/'$	$C_{c} = 0.900$
			n_ 0		ν Δrea - 0 79 sf		00- 0.000
#2	Secondary	565 (0 00 '0	long Sha	rn-Crested Rectar	aular Weir 2 End	Contraction(s)
$\pi \mathcal{L}$	Gecondary	505.0	3.0' (Crest Heig	ht		

Primary OutFlow Max=5.35 cfs @ 11.70 hrs HW=565.11' TW=561.90' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 5.35 cfs @ 6.81 fps)

Secondary OutFlow Max=23.18 cfs @ 12.11 hrs HW=565.24' TW=562.84' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir (Weir Controls 23.18 cfs @ 1.62 fps)

Summary for Pond 3P: Gravel WVTS

Inflow Area =	17.988 ac, 95.60% Impervious, Inflo	ow Depth = 3.78" for 10-Year event
Inflow =	32.38 cfs @ 12.10 hrs, Volume=	5.665 af
Outflow =	23.97 cfs @ 12.24 hrs, Volume=	5.648 af, Atten= 26%, Lag= 8.8 min
Primary =	23.97 cfs @ 12.24 hrs, Volume=	5.648 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 22,959 sf Storage= 27,438 cf Peak Elev= 562.95' @ 12.24 hrs Surf.Area= 24,875 sf Storage= 74,094 cf (46,656 cf above start) Flood Elev= 568.00' Surf.Area= 30,084 sf Storage= 212,684 cf (185,246 cf above start)

Plug-Flow detention time= 229.6 min calculated for 5.018 af (89% of inflow) Center-of-Mass det. time= 114.9 min (912.4 - 797.5)

Volume	Invert	Avail.Sto	orage	Storage De	escription		
#1	558.00'	243,3	05 cf	Custom S	tage Data (Irregu	Ilar) Listed below (I	Recalc)
Elevation	n Si	urf.Area F	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
(feet))	(sq-ft)	(feet)	(%)	(cubic-feet)	(cubic-feet)	(sq-ft)
558.00)	22,771	626.2	0.0	0	0	22,771
559.00)	22,834	626.9	40.0	9,121	9,121	23,401
560.00)	22,897	627.7	40.0	9,146	18,267	24,034
561.00)	22,959	628.5	40.0	9,171	27,438	24,667
562.00)	23,935	639.2	100.0	23,445	50,884	25,919
563.00)	24,924	649.9	100.0	24,428	75,312	27,192
564.00)	25,928	660.6	100.0	25,424	100,736	28,486
565.00)	26,947	671.3	100.0	26,436	127,172	29,801
566.00)	27,978	682.1	100.0	27,461	154,633	31,146
567.00)	29,024	692.8	100.0	28,499	183,132	32,504
568.00)	30,084	703.5	100.0	29,552	212,684	33,883
569.00)	31,161	714.3	100.0	30,621	243,305	35,293
Device	Routing	Invert	Outle	et Devices			
#1	Primary	558.00'	36.0'	' Round C	ulvert		
			L= 2	0.0' CMP,	square edge hea	dwall, Ke= 0.500	
			Inlet	/ Outlet Inv	ert= 558.00' / 558	8.00' S= 0.0000 '/'	Cc= 0.900
			n= 0	.013, Flow	Area= 7.07 sf		
#2	Device 1	561.00'	12.0'	' Vert. Orifi	ce/Grate X 2.00	C= 0.600	
#3	Device 2	558.00'	12.0'	' Vert. Orifi	ce/Grate $C=0$.	600	
#4	Device 1	562.50'	60.0'	' x 30.0'' Ho	oriz. Orifice/Grate	e C= 0.600	
			Limit	ed to weir f	low at low heads		
#5	Device 2	562.50'	60.0'	' x 30.0'' Ho	oriz. Orifice/Grate	e C= 0.600	
			Limit	ed to weir f	low at low heads		
#6	Secondary	564.00'	100.0 5.0' (0' long Sha Crest Heigh	rp-Crested Recta It	angular Weir 2 Er	nd Contraction(s)

Primary OutFlow Max=23.97 cfs @ 12.24 hrs HW=562.95' TW=560.17' (Dynamic Tailwater) **1=Culvert** (Passes 23.97 cfs of 56.81 cfs potential flow)

Page 37

-2=Orifice/Grate (Orifice Controls 9.11 cfs @ 5.80 fps) -3=Orifice/Grate (Passes < 5.28 cfs potential flow) -5=Orifice/Grate (Passes < 14.86 cfs potential flow) -4=Orifice/Grate (Weir Controls 14.86 cfs @ 2.20 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=561.00' TW=558.00' (Dynamic Tailwater) -6=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4P: DP-1

Inflow Area	=	19.937 ac, 9	2.58% Impe	ervious,	Inflow	Depth >	4.50	" for	10-Y	ear eve	ent
Inflow	=	74.97 cfs @	12.11 hrs,	Volume	=	7.481	af				
Outflow	=	3.08 cfs @	18.08 hrs,	Volume	=	6.916	af, A	tten= 9	96%,	Lag= 3	358.3 min
Primary	=	3.08 cfs @	18.08 hrs,	Volume	=	6.916	af			-	
Secondary	=	0.00 cfs @	0.00 hrs,	Volume	=	0.000	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 561.70' @ 18.08 hrs Surf.Area= 55,296 sf Storage= 190,514 cf Flood Elev= 565.00' Surf.Area= 62,400 sf Storage= 384,495 cf

Plug-Flow detention time= 760.3 min calculated for 6.915 af (92% of inflow) Center-of-Mass det. time= 705.3 min (1,577.1 - 871.8)

Invert	Avail.St	orage	Storage Description	n	
558.00'	651,9	999 cf	Custom Stage Dat	a (Irregular) Liste	d below (Recalc)
Su	rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
	47,688 49,705 51,750 53,824 55,926 58,056 60,214 62,400 64,615 1 66,858 1 69,129 1	883.6 899.0 914.4 929.8 945.2 960.6 976.1 991.5 ,006.9 ,022.3 ,037.7	0 48,693 50,724 52,784 54,872 56,988 59,132 61,304 63,504 65,733 67,990	0 48,693 99,417 152,201 207,072 264,060 323,192 384,495 448,000 513,733 581,723	47,688 50,047 52,448 54,888 57,370 59,893 62,470 65,075 67,720 70,405 73,132
	71,429 1	,053.2	70,276	651,999	75,915
outing	Inver	t Outle	et Devices		
imary	558.00 558.00 562.50	' 48.0' L= 6 Inlet n= 0 ' 8.0''	" Round Culvert 63.9' CMP, project / Outlet Invert= 558 .013, Flow Area= 12 Vert. Orifice/Grate	ing, no headwall, .00' / 551.36' S= 2.57 sf C= 0.600	Ke= 0.900 0.0100 '/' Cc= 0.900
	Invert 558.00' Su Su Su Su Su Su Su Su Su Su Su Su Su	Invert Avail.St 558.00' 651,9 Surf.Area (sq-ft) 47,688 49,705 51,750 53,824 55,926 58,056 60,214 62,400 64,615 1 66,858 1 69,129 1 71,429 1 buting Invertimary 558.00 558.00	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Invert Avail.Storage Storage Description 558.00' 651,999 cf Custom Stage Date Surf.Area Perim. Inc.Store (sq-ft) (feet) (cubic-feet) 47,688 883.6 0 49,705 899.0 48,693 51,750 914.4 50,724 53,824 929.8 52,784 55,926 945.2 54,872 58,056 960.6 56,988 60,214 976.1 59,132 62,400 991.5 61,304 64,615 1,006.9 63,504 66,858 1,022.3 65,733 69,129 1,037.7 67,990 71,429 1,053.2 70,276 Duting Invert Outlet Devices imary 558.00' 48.0'' Round Culvert L= 663.9' CMP, project Inlet / Outlet Invert= 558 n= 0.013, Flow Area= 11 562.50' evice 1 558.00' 8.0'' Vert. Orifice/Grate	InvertAvail.StorageStorage Description $558.00'$ $651,999$ cfCustom Stage Data (Irregular) ListeSurf.AreaPerim.Inc.StoreCum.Store $(sq-ft)$ (feet)(cubic-feet)(cubic-feet) $47,688$ 883.6 00 $49,705$ 899.0 $48,693$ $48,693$ $51,750$ 914.4 $50,724$ $99,417$ $53,824$ 929.8 $52,784$ $152,201$ $55,926$ 945.2 $54,872$ $207,072$ $58,056$ 960.6 $56,988$ $264,060$ $60,214$ 976.1 $59,132$ $323,192$ $62,400$ 991.5 $61,304$ $384,495$ $64,615$ $1,006.9$ $63,504$ $448,000$ $66,858$ $1,022.3$ $65,733$ $513,733$ $69,129$ $1,037.7$ $67,990$ $581,723$ $71,429$ $1,053.2$ $70,276$ $651,999$ butingInvertOutlet Devicesimary $558.00'$ $48.0''$ Round Culvert $L= 663.9'$ CMP, projecting, no headwall, Inlet / Outlet Invert= $558.00'$ $8.0''$ Vert. Orifice/Grate $C= 0.600$ evice 1 $558.00'$ $8.0''$ Vert. Orifice/Grate $C= 0.600$

ProposedType III 24-hr10-Year Rainfall=4.90"Prepared by HDR IncPrinted 9/14/2017HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLCPage 38

 #4
 Device 1
 566.00'
 60.0'' W x 60.0'' H Vert. Orifice/Grate
 C= 0.600

 #5
 Secondary
 567.00'
 45.0 deg x 100.0' long x 1.00' rise Sharp-Crested Vee/Trap Weir

 Cv= 2.56 (C= 3.20)
 Cv= 3.20
 Cv= 3.20
 Cv= 3.20

Primary OutFlow Max=3.08 cfs @ 18.08 hrs HW=561.70' TW=558.15' (Dynamic Tailwater) -1=Culvert (Passes 3.08 cfs of 62.80 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 3.08 cfs @ 8.84 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=558.00' TW=0.00' (Dynamic Tailwater) 5=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Summary for Pond 13P: Det. Pond - 2

Inflow Area	a =	1.259 ac, 7	'1.41% Impe	ervious,	Inflow Depth =	3.85	" for 10-Y	'ear event
Inflow	=	4.30 cfs @	12.12 hrs,	Volume	= 0.404	af		
Outflow	=	0.78 cfs @	12.72 hrs,	Volume	= 0.399	af, A	Atten= 82%,	Lag= 35.9 mir
Primary	=	0.78 cfs @	12.72 hrs,	Volume	= 0.399	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 539.56' @ 12.72 hrs Surf.Area= 6,928 sf Storage= 9,328 cf Flood Elev= 541.00' Surf.Area= 8,791 sf Storage= 20,626 cf

Plug-Flow detention time= 390.7 min calculated for 0.399 af (99% of inflow) Center-of-Mass det. time= 381.7 min (1,181.1 - 799.4)

Volume	Inv	ert Avail	.Storage	Storage Description	n		
#1	538.0	00' 2	20,626 cf	Custom Stage Da	ta (Irregular) Liste	ed below (Recalc)	
Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(tee	et)	(sq-ft)	(teet)	(cubic-feet)	(cubic-feet)	<u>(sq-tt)</u>	
538.0	00	5,054	387.0	0	0	5,054	
539.0	00	6,243	405.8	5,638	5,638	6,305	
540.0	00	7,489	424.7	6,857	12,495	7,621	
541.0	00	8,791	423.9	8,131	20,626	8,049	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	538.	00' 15.0 '	" Round Culvert			
			L= 9	4.0' CMP, square	edge headwall, K	(e= 0.500	
			Inlet	/ Outlet Invert = 538	3.00' / 537.00' S=	= 0.0106 '/' Cc= 0.90	0
			n= 0	.013, Flow Area= 1	I.23 sf		
#2	Device 1	538.	00' 2.4''	Vert. Orifice/Grate	C= 0.600		
#3	Device 1	538.	90' 4.0''	Vert. Orifice/Grate	C= 0.600		
#4	Device 1	539.	50' 24.0 '	" Horiz. Orifice/Gra	ate C= 0.600		
			Limit	ed to weir flow at lo	ow heads		

Primary OutFlow Max=0.78 cfs @ 12.72 hrs HW=539.56' TW=533.74' (Dynamic Tailwater)

2=Orifice/Grate (Orifice Controls 0.18 cfs @ 5.82 fps)

-3=Orifice/Grate (Orifice Controls 0.30 cfs @ 3.38 fps)

-4=Orifice/Grate (Weir Controls 0.31 cfs @ 0.81 fps)

Summary for Pond 15P: Culvert at Entr.

Inflow Area	ι =	4.001 ac,	15.42% Impe	ervious,	Inflow Depth =	2.82	" for 10-	Year event
Inflow	=	8.29 cfs @	12.24 hrs,	Volume	= 0.942	af		
Outflow	=	8.29 cfs @	12.24 hrs,	Volume	= 0.942	af, A	tten= 0%,	Lag= 0.0 min
Primary	=	8.29 cfs @	12.24 hrs,	Volume	= 0.942	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 530.16' @ 12.24 hrs Surf.Area= 306 sf Storage= 333 cf

Plug-Flow detention time= 0.6 min calculated for 0.942 af (100% of inflow) Center-of-Mass det. time= 0.5 min (830.9 - 830.5)

Volume	Inve	rt Avail	.Storage	Storage Descripti	on			
#1	527.1	7'	1,407 cf	Custom Stage Da	ata (Irregular) List	ted below (Recalc)	
Elevation (feet)	:	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
527.17 528.00 529.00 530.00 531.00 532.00	Pouting	6 44 121 266 555 897	14.0 35.0 58.1 92.9 117.6 157.4	0 18 79 189 402 719	0 18 98 286 688 1,407	6 90 268 693 1,120 2,001		
#1 F #2 [#3 [Primary Device 1 Device 1	527. 527. 527. 530.	17' 18.0 ' L= 5 Inlet n= 0 17' 18.0 ' 00' 72.0 ' Limit	Outlet Devices 18.0" Round Culvert X 2.00 L= 52.8' RCP, groove end w/headwall, Ke= 0.200 Inlet / Outlet Invert= 527.17' / 526.65' S= 0.0098 '/' Cc= 0.9 n= 0.013, Flow Area= 1.77 sf 18.0" W x 3.0" H Vert. Orifice/Grate C= 0.600 72.0" x 72.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads				

Primary OutFlow Max=8.29 cfs @ 12.24 hrs HW=530.16' TW=526.94' (Dynamic Tailwater) 1=Culvert (Passes 8.29 cfs of 27.35 cfs potential flow) 2=Orifice/Grate (Orifice Controls 3.06 cfs @ 8.16 fps)

-3=Orifice/Grate (Weir Controls 5.23 cfs @ 1.33 fps)

Summary for Pond 17P: Box Culvert for stream

Inflow Area	a =	57.525 ac,	3.12% Impervious,	Inflow Depth = 2	2.57" for 10-Year event
Inflow	=	74.83 cfs @	12.62 hrs, Volume	= 12.306 af	F
Outflow	=	74.75 cfs @	12.65 hrs, Volume	= 12.306 af	f, Atten= 0%, Lag= 1.8 min
Primary	=	74.75 cfs @	12.65 hrs, Volume	= 12.306 at	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 533.76' @ 12.65 hrs Surf.Area= 3,542 sf Storage= 1,301 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.1 min (878.2 - 878.1)

Volume	Inv	ert Avai	I.Storage	Storage Description					
#1	533.	00'	25,714 cf	Custom Stage Da	ata (Irregular) Lis [.]	ted below (Recalc)			
Elevatio	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
533.0	00	412	159.8	0	0	412			
534.0	00	5,210	513.7	2,362	2,362	19,382			
535.0	00	11,714	795.5	8,245	10,608	48,748			
536.0	00	18,774	996.6	15,106	25,714	77,441			
Device	Routing	In	vert Outle	et Devices					
#1	Primary	532	.20' 144.	0" W x 60.0" H Bo	ox Culvert				
		L= 51.5' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 532.20' / 530.66' S= 0.0299 '/' Cc= 0.900 n= 0.024, Flow Area= 60.00 sf							

Primary OutFlow Max=74.75 cfs @ 12.65 hrs HW=533.76' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 74.75 cfs @ 4.00 fps)

Summary for Pond 18P: Level Spreader

Inflow Area	ι =	19.937 ac,	92.58% Impe	ervious,	Inflow	Depth >	4.16"	for 10-	Year eve	nt
Inflow	=	3.08 cfs @	18.08 hrs,	Volume	=	6.916	af			
Outflow	=	3.08 cfs @	18.09 hrs,	Volume	=	6.915	af, Att	en= 0%,	Lag= 0.6	6 min
Primary	=	3.08 cfs @	18.09 hrs,	Volume	=	6.915	af		-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 558.00' Surf.Area= 2,625 sf Storage= 7,350 cf Peak Elev= 558.15' @ 18.09 hrs Surf.Area= 2,625 sf Storage= 7,505 cf (155 cf above start)

Plug-Flow detention time= 55.4 min calculated for 6.746 af (98% of inflow) Center-of-Mass det. time= 0.7 min (1,577.8 - 1,577.1)

Volume	Invert	Avail.Storage	Storage Description
#1	551.00'	8,400 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
			21,000 cf Overall x 40.0% Voids

Proposed

Prepared by HDR Inc				
HydroCAD® 10.00-19 s/n 05756	© 2016 HydroCAD	Software	Solutions L	L

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
551.00	2,625	0	0
556.00	2,625	13,125	13,125
557.00	2,625	2,625	15,750
558.00	2,625	2,625	18,375
559.00	2,625	2,625	21,000
	المحد معا		

Device	Routing	Invert	Outlet Devices	
#1	Primary	558.00'	75.0" x 35.0" Horiz. Orifice/Grate	C= 0.600
			Limited to weir flow at low heads	

Primary OutFlow Max=3.08 cfs @ 18.09 hrs HW=558.15' TW=558.06' (Dynamic Tailwater) **1=Orifice/Grate** (Weir Controls 3.08 cfs @ 1.14 fps)

Summary for Pond 23P:

Inflow Area	=	0.805 ac, 7	3.17% Impe	ervious,	Inflow D	Depth =	3.96	6" for	10-`	Year ev	ent
Inflow =	=	3.52 cfs @	12.07 hrs,	Volume=	=	0.265	af				
Outflow =	=	3.47 cfs @	12.08 hrs,	Volume=	=	0.265	af, A	Atten= 1	1%,	Lag= 0	.8 min
Primary =	=	0.23 cfs @	13.96 hrs,	Volume=	=	0.156	af				
Secondary =	=	3.32 cfs @	12.08 hrs,	Volume=	=	0.109	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 531.86' @ 12.08 hrs Surf.Area= 908 sf Storage= 645 cf

Plug-Flow detention time= 8.4 min calculated for 0.265 af (100% of inflow) Center-of-Mass det. time= 8.3 min (799.5 - 791.2)

Volume	Invert	t Avail.S	Storage	Storage D	escription		
#1	527.33	1	793 cf	Custom S	Stage Data (Irregu	llar) Listed below (F	Recalc)
Elevatior (feet)	n S)	urf.Area (sq-ft)	Perim. (feet)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
527.33 527.34 530.16 530.19 531.00 532.01	3 4 5 9)	4 4 56 317 1,044	8.0 8.0 110.4 180.9 364.9	0.0 35.0 35.0 100.0 100.0 100.0	0 0 4 1 137 652	0 0 4 5 141 793	4 27 991 2,630 10,626
Device	Routing	Inve	ert Outle	et Devices			
#1 #2	Primary Secondary	527.3 v 531.6	3' 2.5'' L= 1 Inlet n= 0 0' 30.0 Cv=	Round Cu 6.0' CPP, / Outlet Inv .013, Flow deg x 7.7' 2.61 (C= 3	ulvert square edge head vert= 527.33' / 527 v Area= 0.03 sf long x 0.40' rise \$ 3.26)	dwall, Ke= 0.500 7.17' S= 0.0100 '/' Sharp-Crested Vee	Cc= 0.900 / Trap Weir

Primary OutFlow Max=0.23 cfs @ 13.96 hrs HW=531.58' TW=527.56' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.23 cfs @ 6.82 fps)

Secondary OutFlow Max=3.31 cfs @ 12.08 hrs HW=531.86' TW=530.14' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Weir Controls 3.31 cfs @ 1.65 fps)

Summary for Pond 24P: Flow Splitter

Inflow Area	l =	16.505 ac,10	0.00% Impe	ervious, Inflow	Depth = 4.6	6" for 10-`	Year event
Inflow	=	75.45 cfs @	12.10 hrs,	Volume=	6.414 af		
Outflow	=	75.45 cfs @	12.10 hrs,	Volume=	6.414 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	26.66 cfs @	12.10 hrs,	Volume=	5.229 af		•
Secondary	=	48.79 cfs @	12.10 hrs,	Volume=	1.185 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 568.34' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	562.96'	24.0" Round Culvert
			L= 44.7' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 562.96' / 562.00' S= 0.0215 '/' Cc= 0.900
			n= 0.013, Flow Area= 3.14 sf
#2	Secondary	562.96'	48.0" Round Culvert
			L= 106.2' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 562.96' / 562.43' S= 0.0050 '/' Cc= 0.900
			n= 0.013, Flow Area= 12.57 sf
#3	Device 2	565.70'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=26.65 cfs @ 12.10 hrs HW=568.34' TW=565.24' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 26.65 cfs @ 8.48 fps)

Secondary OutFlow Max=48.75 cfs @ 12.10 hrs HW=568.34' TW=559.57' (Dynamic Tailwater) 2=Culvert (Passes 48.75 cfs of 97.98 cfs potential flow) 3=Sharp-Crested Rectangular Weir (Weir Controls 48.75 cfs @ 5.31 fps)

Summary for Pond 28P: Ramp Culvert

Inflow Area	ι =	0.918 ac, 7	72.44% Impe	ervious,	Inflow Depth	= 3.8	9" for 10-	Year event
Inflow	=	3.47 cfs @	12.13 hrs,	Volume	= 0.29	97 af		
Outflow	=	3.46 cfs @	12.14 hrs,	Volume	= 0.29	97 af,	Atten= 0%,	Lag= 0.4 min
Primary	=	3.46 cfs @	12.14 hrs,	Volume	= 0.29	97 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 555.69' @ 12.14 hrs Surf.Area= 224 sf Storage= 99 cf Flood Elev= 557.00' Surf.Area= 534 sf Storage= 342 cf

Plug-Flow detention time= 1.7 min calculated for 0.297 af (100% of inflow) Center-of-Mass det. time= 1.2 min (799.5 - 798.3)

Proposed

Prepared by HDR Inc

Volume	Inv	ert Avail	.Storage	Storage Descripti	on		
#1	554.0	61'	342 cf	Custom Stage Da	ata (Irregular) Lisi	ed below (Recalc)	
Elevatio	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
554.6 555.0 556.0 556.3	61 00 00 86	4 56 337 534	8.0 45.8 150.1 184.0	0 10 177 155	0 10 187 342	4 166 1,795 2,698	
Device	Routing	١n	vert Outle	et Devices			
#1	Primary	555.	.00' 23.0 ' L= 3 Inlet n= 0	" W x 14.0" H, R=2 0.0' RCP, groove / Outlet Invert= 55 .013, Flow Area=	22.0" Elliptical R0 end projecting, k 5.00' / 553.62' S 1.83 sf	CP_Elliptical 23x14 (e= 0.200 = 0.0460 '/' Cc= 0.90	0

Primary OutFlow Max=3.46 cfs @ 12.14 hrs HW=555.69' TW=554.07' (Dynamic Tailwater) **1=RCP_Elliptical 23x14** (Inlet Controls 3.46 cfs @ 3.11 fps)

Summary for Pond 29P: Gravel Inlet Trench

Inflow Area	ι =	1.259 ac, 7	'1.41% Impe	ervious,	Inflow Depth	= 3.8	35" for 10-	Year event
Inflow	=	4.30 cfs @	12.12 hrs,	Volume	= 0.4	04 af		
Outflow	=	4.30 cfs @	12.12 hrs,	Volume	= 0.4	04 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	4.30 cfs @	12.12 hrs,	Volume	= 0.4	04 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 539.59' @ 12.18 hrs Surf.Area= 4 sf Storage= 2 cf

Plug-Flow detention time= 0.1 min calculated for 0.404 af (100% of inflow) Center-of-Mass det. time= 0.1 min (799.4 - 799.3)

Volume	Invert	Avail.Stora	age	Storage Description
#1	538.25'	14	4 cf	2.00'W x 2.00'L x 9.75'H Prismatoid 39 cf Overall x 35.0% Voids
Device	Routing	Invert	Outle	et Devices
#1	Primary	538.25'	15.0 L= 2 Inlet n= 0	" Round Culvert 5.0' RCP, square edge headwall, Ke= 0.500 / Outlet Invert= 538.25' / 538.00' S= 0.0100 '/' Cc= 0.900 .013, Flow Area= 1.23 sf

Primary OutFlow Max=4.20 cfs @ 12.12 hrs HW=539.53' TW=539.01' (Dynamic Tailwater) -1=Culvert (Outlet Controls 4.20 cfs @ 4.15 fps)

Summary for Pond 30P: Culvert 2

Inflow Area	=	1.380 ac,	0.00% Impervious,	Inflow Depth = 2	.54" for 10-Year event
Inflow	=	2.95 cfs @	12.24 hrs, Volume	= 0.292 af	
Outflow	=	2.95 cfs @	12.24 hrs, Volume	= 0.292 af	, Atten= 0%, Lag= 0.0 min
Primary	=	2.95 cfs @	12.24 hrs, Volume	= 0.292 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 534.46' @ 12.24 hrs Flood Elev= 534.87'

Device	Routing	Invert	Outlet Devices
#1	Primary	533.66'	23.0" W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14 L= 24.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 533.66' / 533.54' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 1.83 sf

Primary OutFlow Max=2.95 cfs @ 12.24 hrs HW=534.46' TW=533.97' (Dynamic Tailwater) ☐ 1=RCP_Elliptical 23x14 (Barrel Controls 2.95 cfs @ 3.11 fps)

Summary for Pond 31P: Culvert 3

Inflow Area	l =	0.544 ac,	73.53% Impe	rvious, l	Inflow Depth =	3.9	9" for 10-	Year event
Inflow	=	2.41 cfs @	12.07 hrs, 1	Volume=	= 0.18 ⁻	l af		
Outflow	=	2.41 cfs @	12.07 hrs, `	Volume=	= 0.18 ⁻	l af, <i>i</i>	Atten= 0%,	Lag= 0.0 min
Primary	=	2.41 cfs @	12.07 hrs, `	Volume=	= 0.18 ⁻	l af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 533.68' @ 12.07 hrs Flood Elev= 538.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	533.00'	23.0" W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14
			L= 24.0' RCP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 533.00' / 532.35' S= 0.0271 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.83 sf

Primary OutFlow Max=2.40 cfs @ 12.07 hrs HW=533.68' TW=532.82' (Dynamic Tailwater) -1=RCP_Elliptical 23x14 (Inlet Controls 2.40 cfs @ 2.18 fps)

Summary for Link 21L: Point A

Inflow Ar	ea =	27.710 ac, 6	6.61% Impe	ervious,	Inflow	Depth >	3.71"	for 10-	Year ev	/ent
Inflow	=	17.72 cfs @	12.29 hrs,	Volume	=	8.558	af			
Primary	=	17.72 cfs @	12.29 hrs,	Volume	=	8.558	af, At	ten= 0%,	Lag= 0).0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 22L: Point B

Inflow /	Area	1 =	57.525 ac,	3.12% Impervious,	Inflow Depth = 2.5	57" for 10-Year event
Inflow		=	74.75 cfs @	12.65 hrs, Volume	= 12.306 af	
Primar	у	=	74.75 cfs @	12.65 hrs, Volume	= 12.306 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 28L: Point F

Inflow A	Area	=	5.040 ac,	0.00% Impervious,	Inflow Depth =	2.54" for 1	0-Year event
Inflow		=	7.01 cfs @	12.61 hrs, Volume)= 1.067 a	af	
Primary	y	=	7.01 cfs @	12.61 hrs, Volume	e 1.067 a	af, Atten= 0%	%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Subcatchment 1S: Main Site

Runoff = 134.52 cfs @ 12.10 hrs, Volume= 11.636 af, Depth= 8.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Area	Area (ac) CN Description									
16.505 100.00% Impervious Area Tc Length (feet) Slope (ft/ft) Velocity (cfs) Description 2.3 158 0.0100 1.16 Sheet Flow, Smooth surfaces n = 0.011 P2= 3.30" 0.5 135 0.0025 4.18 20.51 Pipe Channel, 130-131 30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63' n= 0.013 0.4 110 0.0025 4.72 33.35 Pipe Channel, 131-132 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.013 0.3 79 0.0025 4.72 33.35 Pipe Channel, 132-133 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.013 0.8 246 0.0025 5.23 50.30 Pipe Channel, 132-133 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013 0.4 133 0.0025 5.23 50.30 Pipe Channel, 134-135 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013 0.4 133 0.0025 5.23 50.30 Pipe Channel, 137-138 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013 0.7 256 0.0025 5.72 71.82 Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013 0.7 233 0.0025 5.72 71.82 Pipe Channel, 138-139 48.0" Rou	16.	505 9	8 Pave	ed parking	, HSG D						
TcLength (fmin)Slope (ft/ft)Velocity (ft/sec)Capacity (cfs)Description2.31580.01001.16Sheet Flow, Smooth surfaces $n = 0.011$ P2= 3.30"0.51350.00254.1820.51Pipe Channel, 130-131 30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63' $n = 0.013$ 0.41100.00254.7233.35Pipe Channel, 131-132 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' $n = 0.013$ 0.3790.00254.7233.35Pipe Channel, 132-133 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' $n = 0.013$ 0.82460.00255.2350.30Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' $n = 0.013$ 0.41330.00255.2350.30Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' $n = 0.013$ 0.61820.00255.7271.82Pipe Channel, 136-137 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.72330.00255.7271.82Pipe Channel, 137-138 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.41300.00255.7271.82Pipe Channel, 137-138 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.41300.00255.7271.82Pipe Channel, 138-139 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.31130.00255.7271.82Pipe Channel, 139-Outlet $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.4130 <td< td=""><td>16.</td><td>505</td><td>100.</td><td>00% Impe</td><td>rvious Area</td><td></td></td<>	16.	505	100.	00% Impe	rvious Area						
2.3 158 0.0100 1.16 Sheet Flow, Smooth surfaces $n = 0.011$ P2= 3.30" 0.5 135 0.0025 4.18 20.51 Pipe Channel, 130-131 30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63' n = 0.013 0.4 110 0.0025 4.72 33.35 Pipe Channel, 131-132 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n = 0.013 0.3 79 0.0025 4.72 33.35 Pipe Channel, 132-133 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n = 0.013 0.8 246 0.0025 5.23 50.30 Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n = 0.013 0.4 133 0.0025 5.23 50.30 Pipe Channel, 134-135 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n = 0.013 0.6 182 0.0025 5.23 50.30 Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n = 0.013 0.7 256 0.0025 5.72 71.82 Pipe Channel, 136-137 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n = 0.013 0.7 233 0.0025 5.72 71.82 Pipe Channel, 138-139 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n = 0.013 0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-0utle	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
Smooth surfaces n= 0.011 P2= 3.30" 0.5 135 0.0025 4.18 20.51 Pipe Channel, 130-131 30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63' n= 0.013 0.4 110 0.0025 4.72 33.35 Pipe Channel, 131-132 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.013 0.3 79 0.0025 4.72 33.35 Pipe Channel, 132-133 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.013 0.8 246 0.0025 5.23 50.30 Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013 0.4 133 0.0025 5.23 50.30 Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013 0.6 182 0.0025 5.72 71.82 Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 12.6' r= 1.00' n= 0.013 0.7 256 0.0025 5.72 71.82 Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013 0.4 130 0.0025 5.72 71.82 Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013 0.4 130 0.0025 5.72 71.82 Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013 0.4 130 0.0025 5.72 71.82 Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013 0.4 130 0.0025 5.72 71.82 Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013 0.4 130 0.0025 5.72 71.82 Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013 0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-0utlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013	2.3	158	0.0100	1.16		Sheet Flow,					
0.4110 0.0025 4.72 33.35 Pipe Channel, 131-132 $36.0"$ Round Area= 7.1 sf Perim= 9.4' r= 0.75' $n= 0.013$ 0.3 79 0.0025 4.72 33.35 Pipe Channel, 132-133 $36.0"$ Round Area= 7.1 sf Perim= 9.4' r= 0.75' $n= 0.013$ 0.8 246 0.0025 5.23 50.30 Pipe Channel, 133-134 $42.0"$ Round Area= 9.6 sf Perim= 11.0' r= 0.88' $n= 0.013$ 0.4 133 0.0025 5.23 50.30 Pipe Channel, 134-135 $42.0"$ Round Area= 9.6 sf Perim= 11.0' r= 0.88' $n= 0.013$ 0.6 182 0.0025 5.23 50.30 Pipe Channel, 135-136 $42.0"$ Round Area= 9.6 sf Perim= 11.0' r= 0.88' $n= 0.013$ 0.6 182 0.0025 5.72 71.82 Pipe Channel, 136-137 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n= 0.013$ 0.7 233 0.0025 5.72 71.82 Pipe Channel, 137-138 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n= 0.013$ 0.4 130 0.0025 5.72 71.82 Pipe Channel, 138-139 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n= 0.013$ 0.3 113 0.0025 5.72 71.82 Pipe Channel, 138-139 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n= 0.013$ 0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-Outlet $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n= 0.013$	0.5	135	0.0025	4.18	20.51	Smooth surfaces n= 0.011 P2= 3.30" Pipe Channel, 130-131 30.0" Bound Area- 4.9 sf Perim- 7.9' r- 0.63'					
0.3790.00254.7233.35Pipe Channel, 132-133 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.0130.82460.00255.2350.30Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.0130.41330.00255.2350.30Pipe Channel, 134-135 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.0130.61820.00255.2350.30Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.0130.61820.00255.2350.30Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.0130.72560.00255.7271.82Pipe Channel, 136-137 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.0130.72330.00255.7271.82Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.0130.41300.00255.7271.82Pipe Channel, 138-139 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.0130.31130.00255.7271.82Pipe Channel, 139-Outlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013	0.4	110	0.0025	4.72	33.35	n= 0.013 Pipe Channel, 131-132 36.0" Bound Area- 7.1 sf Perim- 9.4' r- 0.75'					
0.82460.00255.2350.30Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.0130.41330.00255.2350.30Pipe Channel, 134-135 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.0130.61820.00255.2350.30Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.0130.61820.00255.2350.30Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.0130.72560.00255.7271.82Pipe Channel, 136-137 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.0130.72330.00255.7271.82Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.0130.41300.00255.7271.82Pipe Channel, 138-139 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.0130.31130.00255.7271.82Pipe Channel, 139-Outlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013	0.3	79	0.0025	4.72	33.35	n= 0.013 Pipe Channel, 132-133 36.0" Bound Area= 7.1 sf Perim= 9.4' r= 0.75'					
0.4133 0.0025 5.23 50.30 Pipe Channel, 134-135 $42.0"$ Round Area= 9.6 sf Perim= 11.0' r= 0.88' $n = 0.013$ 0.6 182 0.0025 5.23 50.30 Pipe Channel, 135-136 $42.0"$ Round Area= 9.6 sf Perim= 11.0' r= 0.88' $n = 0.013$ 0.7 256 0.0025 5.72 71.82 Pipe Channel, 136-137 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.7 233 0.0025 5.72 71.82 Pipe Channel, 137-138 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.4 130 0.0025 5.72 71.82 Pipe Channel, 138-139 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-Outlet $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$	0.8	246	0.0025	5.23	50.30	n= 0.013 Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'					
n = 0.013 0.6 182 0.0025 5.23 50.30 Pipe Channel, 135-136 $42.0"$ Round Area= 9.6 sf Perim= $11.0'$ r= $0.88'$ $n = 0.013$ 0.7 256 0.0025 5.72 71.82 Pipe Channel, 136-137 $48.0"$ Round Area= 12.6 sf Perim= $12.6'$ r= $1.00'$ $n = 0.013$ 0.7 233 0.0025 5.72 71.82 Pipe Channel, 137-138 $48.0"$ Round Area= 12.6 sf Perim= $12.6'$ r= $1.00'$ $n = 0.013$ 0.4 130 0.0025 5.72 71.82 Pipe Channel, 138-139 $48.0"$ Round Area= 12.6 sf Perim= $12.6'$ r= $1.00'$ $n = 0.013$ 0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-Outlet $48.0"$ Round Area= 12.6 sf Perim= $12.6'$ r= $1.00'$ $n = 0.013$ 0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-Outlet $48.0"$ Round Area= 12.6 sf Perim= $12.6'$ r= $1.00'$ $n = 0.013$	0.4	133	0.0025	5.23	50.30	n= 0.013 Pipe Channel, 134-135 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'					
0.7 256 0.0025 5.72 71.82 Pipe Channel, 136-137 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.7 233 0.0025 5.72 71.82 Pipe Channel, 137-138 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.4 130 0.0025 5.72 71.82 Pipe Channel, 138-139 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-Outlet 	0.6	182	0.0025	5.23	50.30	n= 0.013 Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' p. 0.012					
0.7 233 0.0025 5.72 71.82 Pipe Channel, 137-138 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.4 130 0.0025 5.72 71.82 Pipe Channel, 138-139 $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-Outlet $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$ 0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-Outlet $48.0"$ Round Area= 12.6 sf Perim= 12.6' r= 1.00' $n = 0.013$	0.7	256	0.0025	5.72	71.82	Pipe Channel, 136-137 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'					
0.4 130 0.0025 5.72 71.82 Pipe Channel, 138-139 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013 0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-Outlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013	0.7	233	0.0025	5.72	71.82	Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'					
0.3 113 0.0025 5.72 71.82 Pipe Channel, 139-Outlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013	0.4	130	0.0025	5.72	71.82	Pipe Channel, 138-139 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'					
	0.3	113	0.0025	5.72	71.82	Pipe Channel, 139-Outlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013					

7.4 1,775 Total

Summary for Subcatchment 10S: Forebay Area

Runoff = 2.81 cfs @ 12.07 hrs, Volume= 0.200 af, Depth= 6.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area (ac)	CN	Description						
0.268	80	>75% Grass co	ver, Good,	, HSG D				
0.086	98	Water Surface,	HSG D					
0.354	84	Weighted Avera	age					
0.268		75.71% Perviou	us Area					
0.086		24.29% Impervi	ious Area					
Tc Leng (min) (fee	ith s et)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description				
5.0				Direct Entry,				
Summary for Subcatchment 11S: Gravel WVTS								

Runoff = 9.47 cfs @ 12.07 hrs, Volume= 0.694 af, Depth= 7.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area	(ac)	CN	Desc	ription		
0.	605	98	Wate	er Surface	, HSG D	
0.	296	80	>75%	6 Grass co	over, Good	I, HSG D
0.	228	77	Woo	ds, Good,	HSG D	
1.	129	89	Weig	hted Aver	age	
0.	524		46.41	1% Pervio	us Area	
0.	605		53.59	9% Imperv	vious Area	
Tc (min)	Leng (fee	th s et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0						Direct Entry,

Summary for Subcatchment 12S: Subcat for Swale - 1

Runoff = 7.56 cfs @ 12.08 hrs, Volume= 0.583 af, Depth= 7.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

	Area (ac)	CN	Description
	0.253	74	>75% Grass cover, Good, HSG C
*	0.665	98	Paved parking, HSG C
	0.918	91	Weighted Average
	0.253		27.56% Pervious Area
	0.665		72.44% Impervious Area

Propos Prepare HydroCA	ed by HD D® 10.00	R Inc -19_s/n 05	5756 © 20 ⁻	Type III 24-hr	100-Year Rainfall=8.70' Printed 9/14/2017 Page 48		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0	993	0.1266	2.77	\$ <i>i</i>	Lag/CN Method,		
			Summ	ary for S	ubcatchment 1	3S: Pond	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

16.77 cfs @ 12.07 hrs, Volume=

Area (ac)	CN	Desc	ription			
1.2	261	98	Wate	er Surface	, HSG C		
0.6	624	80	>75%	6 Grass co	over, Good	, HSG D	
0.0	064	77	Woo	ds, Good,	HSG D		
1.9	949	92	Weig	hted Aver	age		
0.6	688		35.30	0% Pervio	us Area		
1.2	261		64.70	0% Imperv	vious Area		
Tc (min)	Leng (fee	th s	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.0						Direct Entry,	

Summary for Subcatchment 16S: DA to Entr. Culvert

Runoff = 15.19 cfs @ 12.25 hrs, Volume=

Runoff

=

1.577 af, Depth= 5.92"

1.257 af, Depth= 7.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area	(ac)	CN	Desc	cription		
3.	168	77	Woo	ds, Good,	HSG D	
0.	028	98	Pave	ed parking,	HSG D	
3.	196	77	Weig	ghted Aver	age	
3.	168		99.12	2% Pervio	us Area	
0.	028		0.88	% Impervi	ous Area	
т.	المرم م		01	Mala altri	0	Description
IC	Lengt	n :	Slope	velocity	Capacity	Description
(min)	(teet	.)	(†t/†t)	(ft/sec)	(cts)	
18.9	1,034	4 0.	.0359	0.91		Lag/CN Method,

Summary for Subcatchment 18S: Subcat to Box Culvert

Runoff = 164.85 cfs @ 12.62 hrs, Volume= 26.198 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"
Proposed

Type III 24-hr 100-Year Rainfall=8.70" Printed 9/14/2017 ns LLC Page 49

Prepared by HDR Inc HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Area	(ac)	CN	Desc	ription		
52	.205	77	Woo	ds, Good,	HSG D	
0.	.898	98	Pave	d parking,	HSG D	
53	.103	77	Weig	hted Aver	age	
52.205 98.31% Pervious Area						
0	.898		1.699	% Impervio	ous Area	
Тс	Length	n S	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
47.5	3,073	3 0.	0324	1.08		Lag/CN Method,
	-					

Summary for Subcatchment 19S: Subcat for Swale - 3

Runoff = 5.16 cfs @ 12.03 hrs, Volume= 0.351 af, Depth= 7.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

				0000	inplion		
	0.4	400	98	Wate	r Surface	, HSG C	
*	0.1	144	74	>75%	6 Grass co	over, Good,	HSG C
	0.	544	92	Weig	hted Aver	age	
0.144 26.47% Pervious Area						us Area	
	0.4	400		73.53	3% Imperv	rious Area	
	_		-			. .	
	Tc	Length	S	lope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.3	313	0.1	239	2.27		Lag/CN Method,
	<u>(min)</u> 2.3	(feet) 313	(0.1	(ft/ft) 239	(ft/sec) 2.27	(cfs)	Lag/CN Method,

Summary for Subcatchment 20S: Wetlands

Runoff = 35.64 cfs @ 12.28 hrs, Volume= 3.835 af, Depth= 5.92"

Area	(ac) (CN	Desc	ription		
7.	773	77	Woo	ds, Good,	HSG D	
7.	773		100.0	00% Pervi	ous Area	
Tc (min)	Length (feet)	SI (lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
20.6	1,002	0.0)286	0.81		Lag/CN Method,

Summary for Subcatchment 23S: Point D

Runoff = 319.56 cfs @ 12.42 hrs, Volume= 41.217 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area	Area (ac) CN Description									
83.	546 7	7 Woo	ds, Good,	HSG D						
83.	546	100.0	00% Pervi	ous Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
31.3	3,135	0.0772	1.67		Lag/CN Method,					
		ę	Summary	y for Sub	catchment 24S: DA for 25R					
Runoff	=	3.27 cfs	s@ 12.5	1 hrs, Volu	ume= 0.452 af, Depth= 5.92"					
Runoff b Type III 2 <u>Area</u>	y SCS TF 24-hr 100 (ac) Cl	R-20 meth)-Year Ra N Desc	iod, UH=S iinfall=8.70 cription	CS, Weigh)"	nted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs					
0.	916 7	7 Woo	ds, Good,	HSG D						
0.	916	100.0	00% Pervi	ous Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
36.2	1,580	0.0192	0.73		Lag/CN Method,					
D "	Summary for Subcatchment 25S: Rerouted Area									
Runoff	=	6.87 cts	s@ 12.2	3 nrs,Volu	ume= 0.681 at, Depth= 5.92"					

Area	(ac) (CN De	scription		
1.	380	77 W	oods, Good,	HSG D	
1.	380	10	0.00% Perv	ious Area	
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description
16.9	734	0.026	0.73		Lag/CN Method,

Summary for Subcatchment 26S: Subcat for Swale - 2

Runoff = 3.18 cfs @ 12.03 hrs, Volume= 0.213 af, Depth= 7.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

	Area	(ac)	CN	Desc	ription		
*	0.	234	98	Pave	d parking,	HSG D	
	0.	107	74	>75%	6 Grass co	over, Good,	, HSG C
	0.	341	90	Weig	hted Aver	age	
0.107 31.38% Pervious Area					3% Pervio	us Area	
	0.	234		68.62	2% Imperv	rious Area	
	Tc (min)	Lengtł (feet	n S)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.3	293	3 0. ⁻	1266	2.08		Lag/CN Method,

Summary for Subcatchment 27S: DA for Point F

Runoff = 16.28 cfs @ 12.57 hrs, Volume= 2.486 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

 Area	(ac) C	N Dese	cription			
5.	040 7	77 Woo	ods, Good,	HSG D		
5.	040	100.	00% Pervi	ous Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
44.0	2,185	0.0219	0.83		Lag/CN Method.	

Summary for Subcatchment 29S: Rerouted Area B

Runoff = 4.60 cfs @ 12.19 hrs, Volume= 0.428 af, Depth= 5.92"

Area	(ac) C	N Des	cription		
0.	867 7	77 Wo	ods, Good,	HSG D	
0.	867	100	.00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.3	599	0.0260	0.70		Lag/CN Method,

Summary for Subcatchment 34S: Subcat for Swale - 4

Runoff = 2.47 cfs @ 12.03 hrs, Volume= 0.166 af, Depth= 7.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area	(ac)	CN	Desc	cription		
0.	072	74	>75%	6 Grass co	over, Good,	, HSG C
0.	189	98	Pave	ed parking,	HSG C	
0.	261	91	Weig	phted Aver	age	
0.072 27.59% Pervious Area						
0.	189		72.4 ⁻	1% Imperv	vious Area	
-			~		o	
IC	Lengt	h	Slope	Velocity	Capacity	Description
(min)	(tee	t)	(ft/ft)	(ft/sec)	(CfS)	
2.2	29	20	.1265	2.17		Lag/CN Method,
						•
	Area 0. 0. 0. 0. 0. Tc (min) 2.2	Area (ac) 0.072 0.189 0.261 0.072 0.189 Tc Lengt (min) (feet 2.2 29	Area (ac) CN 0.072 74 0.189 98 0.261 91 0.072 0.189 Tc Length (min) (feet) 2.2 292 0	Area (ac) CN Desc 0.072 74 >75% 0.189 98 Pave 0.261 91 Weig 0.072 27.5% 0.189 72.4% Tc Length Slope (min) (feet) (ft/ft) 2.2 292 0.1265	Area (ac) CN Description 0.072 74 >75% Grass co 0.189 98 Paved parking, 0.261 91 Weighted Aver 0.072 27.59% Pervio 0.189 72.41% Impervio 0.189 72.41% Impervio 0.189 72.41% Impervio 1000000000000000000000000000000000000	Area (ac)CNDescription0.07274>75% Grass cover, Good0.18998Paved parking, HSG C0.26191Weighted Average0.07227.59% Pervious Area0.18972.41% Impervious AreaTcLengthSlopeVelocity(min)(feet)(ft/ft)(ft/sec)2.22920.12652.17

Summary for Reach 8R: Level Spreader

Inflow /	Area =	19.937 ac	, 92.58% Impe	ervious, I	nflow Depth >	7.3	3" for 100)-Year event
Inflow	=	7.62 cfs 🤅	@ 14.64 hrs,	Volume=	12.178	3 af		
Outflov	v =	7.62 cfs (Volume=	12.174	l af,	Atten= 0%,	Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.02 fps, Min. Travel Time= 0.8 min Avg. Velocity = 0.69 fps, Avg. Travel Time= 1.2 min

Peak Storage= 360 cf @ 14.65 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.00' Flow Area= 105.0 sf, Capacity= 439.80 cfs

75.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 30.0 '/' Top Width= 135.00' Length= 48.0' Slope= 0.0100 '/' Inlet Invert= 558.00', Outlet Invert= 557.52'

Summary for Reach 15R: Dry Swale - 1

Inflow Area	a =	0.918 ac, 7	2.44% Impe	ervious,	Inflow Depth =	7.6	62" foi	⁻ 100-	Year event	
Inflow	=	7.56 cfs @	12.08 hrs,	Volume	= 0.583	3 af				
Outflow	=	6.75 cfs @	12.12 hrs,	Volume	= 0.583	3 af,	Atten=	11%,	Lag= 2.4 m	nin

ProposedType III 24-hr100-Year Rainfall=8.70"Prepared by HDR IncPrinted9/14/2017HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLCPage 53

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.69 fps, Min. Travel Time= 4.1 min Avg. Velocity = 1.06 fps, Avg. Travel Time= 14.2 min

Peak Storage= 1,651 cf @ 12.12 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 87.10 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 904.0' Slope= 0.0190 '/' Inlet Invert= 572.17', Outlet Invert= 555.00'

Summary for Reach 18R: Dry Swale - 3

Inflow Ar	ea =	0.544 ac, 73.53% Impervious, I	nflow Depth = 7.74" for 100-Year event
Inflow	=	5.16 cfs @ 12.03 hrs, Volume=	0.351 af
Outflow	=	4.65 cfs @ 12.06 hrs, Volume=	0.351 af, Atten= 10%, Lag= 1.7 mir

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.99 fps, Min. Travel Time= 3.1 min Avg. Velocity = 0.69 fps, Avg. Travel Time= 13.2 min

Peak Storage= 857 cf @ 12.06 hrs Average Depth at Peak Storage= 0.24' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 54.76 cfs

6.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 550.0' Slope= 0.0273 '/' Inlet Invert= 548.05', Outlet Invert= 533.01'

‡

Summary for Reach 20R: Dry Swale - 4

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.03 fps, Min. Travel Time= 1.1 min Avg. Velocity = 0.85 fps, Avg. Travel Time= 3.9 min

Peak Storage= 445 cf @ 12.06 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 66.01 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 198.0' Slope= 0.0109 '/' Inlet Invert= 532.35', Outlet Invert= 530.19'

Summary for Reach 21R: Point C

Inflow Area =4.001 ac, 15.42% Impervious, Inflow Depth =6.28" for 100-Year eventInflow =18.29 cfs @12.24 hrs, Volume=2.093 afOutflow =18.29 cfs @12.24 hrs, Volume=2.093 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.00 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 1.2 min

Peak Storage= 354 cf @ 12.24 hrs Average Depth at Peak Storage= 0.46' Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 240.09 cfs

9.00' x 2.00' deep channel, n= 0.024 Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 77.4' Slope= 0.0136 '/' Inlet Invert= 526.65', Outlet Invert= 525.60'

‡

Summary for Reach 23R: Rerouting Ditch 1

 Inflow Area =
 1.380 ac, 0.00% Impervious, Inflow Depth = 5.92" for 100-Year event

 Inflow =
 6.87 cfs @
 12.23 hrs, Volume=
 0.681 af

 Outflow =
 6.85 cfs @
 12.24 hrs, Volume=
 0.681 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.76 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.23 fps, Avg. Travel Time= 2.3 min

Peak Storage= 312 cf @ 12.24 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 20.18 cfs

2.00' x 1.00' deep channel, n= 0.025 Earth, clean & winding Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 171.0' Slope= 0.0137 '/' Inlet Invert= 536.00', Outlet Invert= 533.66'

Summary for Reach 25R: Ditch

Inflow A	Area =	0.916 ac,	0.00% Impervious,	Inflow Depth = 5.9	92" for 100-Year event
Inflow	=	3.27 cfs @	12.51 hrs, Volume	= 0.452 af	
Outflow		3.26 cfs @	12.52 hrs, Volume	= 0.452 af,	Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.31 fps, Min. Travel Time= 1.9 min Avg. Velocity = 0.83 fps, Avg. Travel Time= 5.3 min

Peak Storage= 369 cf @ 12.52 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 60.53 cfs

2.00' x 2.00' deep channel, n= 0.025 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 262.2' Slope= 0.0064 '/' Inlet Invert= 540.67', Outlet Invert= 539.00'

Summary for Reach 29R: Dry Swale - 2

 Inflow Area =
 1.259 ac, 71.41% Impervious, Inflow Depth = 7.58" for 100-Year event

 Inflow =
 8.43 cfs @ 12.10 hrs, Volume=
 0.795 af

 Outflow =
 8.38 cfs @ 12.12 hrs, Volume=
 0.795 af, Atten= 1%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.02 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 3.8 min

Peak Storage= 569 cf @ 12.12 hrs Average Depth at Peak Storage= 0.64' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 90.04 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 273.0' Slope= 0.0203 '/' Inlet Invert= 553.62', Outlet Invert= 548.08'

Summary for Reach 30R: Rerouted Ditch below Culvert

Inflow /	Area	=	2.247 ac,	0.00% Impervious,	Inflow Depth = 5.	92" for 100-Year event
Inflow	:	=	11.33 cfs @	12.22 hrs, Volume	e= 1.109 af	
Outflov	N :	=	11.31 cfs @	12.23 hrs, Volume	e= 1.109 af,	Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.07 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.67 fps, Avg. Travel Time= 2.1 min

Peak Storage= 473 cf @ 12.23 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 25.17 cfs

2.00' x 1.00' deep channel, n= 0.013 Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 212.0' Slope= 0.0058 '/' Inlet Invert= 533.54', Outlet Invert= 532.32'

Summary for Pond 2P: Forebay

Inflow Area	=	16.859 ac, 9	8.41% Impervio	us, Inflow De	epth =	6.30"	for 100-	Year event
Inflow =	=	36.64 cfs @	12.10 hrs, Volu	me=	8.855 a	af		
Outflow =	=	36.51 cfs @	12.11 hrs, Volu	me=	8.850 a	af, Atte	n= 0%, I	Lag= 0.6 min
Primary =	=	5.22 cfs @	10.36 hrs, Volu	me=	5.271 a	af		-
Secondary :	=	32.14 cfs @	12.11 hrs, Volu	me=	3.579 a	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 3,802 sf Storage= 3,789 cf Peak Elev= 565.30' @ 12.11 hrs Surf.Area= 5,835 sf Storage= 24,399 cf (20,611 cf above start) Flood Elev= 568.00' Surf.Area= 7,249 sf Storage= 42,057 cf (38,268 cf above start)

Plug-Flow detention time= 62.9 min calculated for 8.761 af (99% of inflow) Center-of-Mass det. time= 49.3 min (796.8 - 747.5)

Volume	Invert	Avail.S	Storage	Storage D	escription		
#1	558.00'	49	,579 cf	Custom S	Stage Data (Irregu	lar) Listed below (F	Recalc)
Elevation (feet)	n Su	urf.Area (sq-ft)	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
558.00)	2,536	269.1	0.0	0		2,536
560.00)	2,944 3,366	279.8 290.5	40.0 40.0	1,095	2,356	3,641
561.00 562.00))	3,802 4,252	301.2 312.0	40.0 100.0	1,433 4,025	3,789 7,814	4,225 4,835
563.00 564.00)	4,716 5 194	322.7 333 4	100.0 100.0	4,482 4 953	12,296 17 249	5,462
565.00	,))	5,687	344.1	100.0	5,439	22,687	6,779
567.00)	6,714	365.5	100.0	6,452	35,077	8,180
568.00 569.00))	7,249 7,798	376.2 386.9	100.0 100.0	6,980 7,522	42,057 49,579	8,912 9,666
Device	Routing	Inve	rt Outle	et Devices			
#1	Primary	558.0	0' 12.0' L= 2 Inlet n= 0	" Round C 0.0' CPP, / Outlet Inv .013, Flow	Culvert projecting, no hea /ert= 558.00' / 558 v Area= 0.79 sf	adwall, Ke= 0.900 .00' S= 0.0000 '/'	Cc= 0.900
#2	Secondary	565.0	0' 60.0 ' 3.0' (' long Shar Crest Heigl	r p-Crested Rectar	ngular Weir 2 End	Contraction(s)

Primary OutFlow Max=5.21 cfs @ 10.36 hrs HW=565.05' TW=562.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 5.21 cfs @ 6.64 fps)

Secondary OutFlow Max=32.11 cfs @ 12.11 hrs HW=565.30' TW=563.16' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir (Weir Controls 32.11 cfs @ 1.80 fps)

Summary for Pond 3P: Gravel WVTS

Inflow Area =	=	17.988 ac, 9	5.60% Impe	ervious, li	nflow Depth =	6.37"	for 1	00-Yea	ar event
Inflow =		45.42 cfs @	12.09 hrs,	Volume=	9.544	af			
Outflow =		37.08 cfs @	12.14 hrs,	Volume=	9.514	af, Att	en= 18	8%, La	g= 2.8 min
Primary =		37.08 cfs @	12.14 hrs,	Volume=	9.514	af			
Secondary =		0.00 cfs @	0.00 hrs,	Volume=	0.000	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 22,959 sf Storage= 27,438 cf Peak Elev= 563.97' @ 14.47 hrs Surf.Area= 25,900 sf Storage= 100,017 cf (72,579 cf above start) Flood Elev= 568.00' Surf.Area= 30,084 sf Storage= 212,684 cf (185,246 cf above start)

Plug-Flow detention time= 262.7 min calculated for 8.882 af (93% of inflow) Center-of-Mass det. time= 169.2 min (964.4 - 795.2)

Volume	Invert	Avail.Sto	orage	Storage D	escription		
#1	558.00	243,3	05 cf	Custom S	tage Data (Irregu	Ilar) Listed below (I	Recalc)
Elevatio	n S	urf.Area F	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
(feet	t)	(sq-ft)	(feet)	(%)	(cubic-feet)	(cubic-feet)	(sq-ft)
558.0	0	22,771	626.2	0.0	0	0	22,771
559.0	0	22,834	626.9	40.0	9,121	9,121	23,401
560.0	0	22,897	627.7	40.0	9,146	18,267	24,034
561.0	0	22,959	628.5	40.0	9,171	27,438	24,667
562.0	0	23,935	639.2	100.0	23,445	50,884	25,919
563.0	0	24,924	649.9	100.0	24,428	75,312	27,192
564.0	0	25,928	660.6	100.0	25,424	100,736	28,486
565.0	0	26,947	671.3	100.0	26,436	127,172	29,801
566.0	0	27,978	682.1	100.0	27,461	154,633	31,146
567.0	0	29,024	692.8	100.0	28,499	183,132	32,504
568.0	0	30,084	703.5	100.0	29,552	212,684	33,883
569.0	0	31,161	714.3	100.0	30,621	243,305	35,293
Device	Routing	Invert	Outle	et Devices			
#1	Primary	558.00'	36.0	" Round C	ulvert		
			L= 2	0.0' CMP,	square edge hea	dwall, Ke= 0.500	
			Inlet	/ Outlet Inv	ert= 558.00' / 558	3.00' S= 0.0000 '/'	Cc= 0.900
			n= 0	.013, Flow	Area= 7.07 sf		
#2	Device 1	561.00'	12.0	" Vert. Orifi	ce/Grate X 2.00	C= 0.600	
#3	Device 2	558.00'	12.0	" Vert. Orifi	ce/Grate $C=0$.	600	
#4	Device 1	562.50'	60.0	" x 30.0" Ho	oriz. Orifice/Grate	e C= 0.600	
			Limit	ed to weir f	low at low heads		
#5	Device 2	562.50'	60.0	" x 30.0" Ho	oriz. Orifice/Grate	e C= 0.600	
			Limit	ed to weir f	low at low heads		
#6	Secondary	564.00'	100. 5.0' (0' long Sha Crest Heigh	rp-Crested Recta It	angular Weir 2 Er	nd Contraction(s)

Primary OutFlow Max=36.74 cfs @ 12.14 hrs HW=563.20' TW=562.03' (Dynamic Tailwater) 1=Culvert (Passes 36.74 cfs of 36.76 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 8.17 cfs @ 5.20 fps)
 -3=Orifice/Grate (Passes < 4.08 cfs potential flow)
 -5=Orifice/Grate (Passes < 28.57 cfs potential flow)
 -4=Orifice/Grate (Weir Controls 28.57 cfs @ 2.73 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=561.00' TW=558.00' (Dynamic Tailwater) -6=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4P: DP-1

Inflow Area	a =	19.937 ac, 🤉	92.58% Imp	ervious,	Inflow	Depth >	8.28	3" for	· 100-	Year e	event	
Inflow	=	151.64 cfs @	12.10 hrs,	Volume	=	13.750	af					
Outflow	=	7.62 cfs @	14.63 hrs,	Volume	=	12.180	af, /	Atten=	95%,	Lag=	151.8 ı	min
Primary	=	7.62 cfs @	14.63 hrs,	Volume	=	12.180	af			-		
Secondary	=	0.00 cfs @	0.00 hrs,	Volume	=	0.000	af					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 563.93' @ 14.63 hrs Surf.Area= 60,062 sf Storage= 318,983 cf Flood Elev= 565.00' Surf.Area= 62,400 sf Storage= 384,495 cf

Plug-Flow detention time= 709.3 min calculated for 12.180 af (89% of inflow) Center-of-Mass det. time= 600.7 min (1,495.5 - 894.8)

Volume	Inve	rt Avail	.Storage	Storage Description	on	
#1	558.0	0' 65	51,999 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)
Elevation		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
558.00		47 688	883.6	0	0	47 688
559.00		49.705	899.0	48.693	48.693	50.047
560.00		51,750	914.4	50,724	99,417	52,448
561.00)	53,824	929.8	52,784	152,201	54,888
562.00		55,926	945.2	54,872	207,072	57,370
563.00		58,056	960.6	56,988	264,060	59,893
564.00		60,214	976.1	59,132	323,192	62,470
565.00		62,400	991.5	61,304	384,495	65,075
566.00		64,615	1,006.9	63,504	448,000	67,720
567.00		66,858	1,022.3	65,733	513,733	70,405
568.00		69,129	1,037.7	67,990	581,723	73,132
569.00)	71,429	1,053.2	70,276	651,999	75,915
Device I	Routing	Inv	vert Outle	et Devices		
#1	Primary	558	.00' 48.0	" Round Culvert		
	,		L= 6 Inlet n= 0	63.9' CMP, projec / Outlet Invert= 55 .013, Flow Area=	cting, no headwall, 8.00' / 551.36' S= 12.57 sf	, Ke= 0.900 = 0.0100 '/' Cc= 0.900
#2 #3	Device 1 Device 1	558 562	.00' 8.0'' .50' 12.0 '	Vert. Orifice/Grate "Vert. Orifice/Grate	e C= 0.600 te C= 0.600	

Proposed Type III 24-hr 100-Year Rainfall=8.70" Printed 9/14/2017 Prepared by HDR Inc HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC Page 60

60.0" W x 60.0" H Vert. Orifice/Grate C= 0.600 Device 1 #4 566.00' #5 Secondary 567.00' 45.0 deg x 100.0' long x 1.00' rise Sharp-Crested Vee/Trap Weir Cv= 2.56 (C= 3.20)

Primary OutFlow Max=7.62 cfs @ 14.63 hrs HW=563.93' TW=558.27' (Dynamic Tailwater) -1=Culvert (Passes 7.62 cfs of 94.70 cfs potential flow) -2=Orifice/Grate (Orifice Controls 3.98 cfs @ 11.39 fps) -3=Orifice/Grate (Orifice Controls 3.65 cfs @ 4.64 fps) -4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=558.00' TW=0.00' (Dynamic Tailwater) -5=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Summary for Pond 13P: Det. Pond - 2

Inflow Area	ι =	1.259 ac, 7	'1.41% Impe	ervious,	Inflow De	pth =	7.58"	for 100)-Year e	event
Inflow	=	8.38 cfs @	12.12 hrs,	Volume	=	0.795	af			
Outflow	=	6.50 cfs @	12.23 hrs,	Volume	=	0.789	af, Atte	n= 22%	, Lag=	6.7 min
Primary	=	6.50 cfs @	12.23 hrs,	Volume	=	0.789	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 539.94' @ 12.23 hrs Surf.Area= 7,405 sf Storage= 12,015 cf Flood Elev= 541.00' Surf.Area= 8,791 sf Storage= 20,626 cf

Plug-Flow detention time= 249.7 min calculated for 0.789 af (99% of inflow) Center-of-Mass det. time= 244.2 min (1,023.9 - 779.7)

. . .

Volume	Inve	ert Avail	.Storage	Storage Descriptio	n	
#1	538.0)0' 2	20,626 cf	Custom Stage Dat	ta (Irregular) Listed	d below (Recalc)
Elevatic (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
538.0	00	5,054	387.0	0	0	5,054
539.0	00	6,243	405.8	5,638	5,638	6,305
540.0	00	7,489	424.7	6,857	12,495	7,621
541.0	00	8,791	423.9	8,131	20,626	8,049
Device	Routing	Inv	vert Outle	et Devices		
#1	Primary	538	.00' 15.0 L= 9 Inlet n= 0	" Round Culvert 4.0' CMP, square (/ Outlet Invert= 538 .013. Flow Area= 1	edge headwall, Ke 3.00' / 537.00' S= .23 sf	e= 0.500 0.0106 '/' Cc= 0.900
#2	Device 1	538	.00' 2.4"	Vert. Orifice/Grate	C= 0.600	
#3	Device 1	538.	.90' 4.0''	Vert. Orifice/Grate	C = 0.600	
#4	Device 1	539.	.50' 24.0	" Horiz. Orifice/Gra	te C= 0.600	
			Limi	ted to weir flow at lo	w heads	

Primary OutFlow Max=6.50 cfs @ 12.23 hrs HW=539.94' TW=534.02' (Dynamic Tailwater) **1=Culvert** (Passes 6.50 cfs of 6.65 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.20 cfs @ 6.52 fps)

-3=Orifice/Grate (Orifice Controls 0.39 cfs @ 4.49 fps)

-4=Orifice/Grate (Weir Controls 5.91 cfs @ 2.16 fps)

Summary for Pond 15P: Culvert at Entr.

Inflow Area	a =	4.001 ac, 1	15.42% Impe	ervious,	Inflow Dept	h = 6.2	28" for 100	D-Year event
Inflow	=	18.30 cfs @	12.24 hrs,	Volume	= 2.	093 af		
Outflow	=	18.29 cfs @	12.24 hrs,	Volume	= 2.	093 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	18.29 cfs @	12.24 hrs,	Volume	= 2.	093 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 530.33' @ 12.24 hrs Surf.Area= 351 sf Storage= 389 cf

Plug-Flow detention time= 0.4 min calculated for 2.093 af (100% of inflow) Center-of-Mass det. time= 0.4 min (809.7 - 809.2)

Volume	Inve	ert Avail	.Storage	Storage Descripti	ion		
#1	527.1	7'	1,407 cf	Custom Stage D	ata (Irregular) List	ted below (Recalc)
Elevatior (feet	ו)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
527.17 528.00 529.00 530.00 531.00 532.00	7)))	6 44 121 266 555 897	14.0 35.0 58.1 92.9 117.6 157.4	0 18 79 189 402 719	0 18 98 286 688 1,407	6 90 268 693 1,120 2,001	
Device	Routing	Inv	vert Outle	et Devices			
#1 #2 #3	Primary Device 1 Device 1	527 527 530	.17' 18.0 ' L= 5 Inlet n= 0 .17' 18.0 ' .00' 72.0 '	" Round Culvert 2.8' RCP, groove / Outlet Invert= 52 .013, Flow Area= " W x 3.0" H Vert. " x 72.0" Horiz. O	X 2.00 e end w/headwall, 27.17' / 526.65' S 1.77 sf Orifice/Grate C rifice/Grate C= 0	Ke= 0.200 = 0.0098 '/' Cc= = 0.600 0.600	0.900
				ieu io well now al			

Primary OutFlow Max=18.29 cfs @ 12.24 hrs HW=530.33' TW=527.11' (Dynamic Tailwater) 1=Culvert (Passes 18.29 cfs of 28.48 cfs potential flow) 2=Orifice/Grate (Orifice Controls 3.15 cfs @ 8.39 fps)

-3=Orifice/Grate (Weir Controls 15.14 cfs @ 1.89 fps)

Summary for Pond 17P: Box Culvert for stream

Inflow Are	ea =	57.525 ac,	3.12% Impervious,	Inflow Depth = 5.	96" for 100-Year event
Inflow	=	175.13 cfs @	12.61 hrs, Volume	= 28.547 af	
Outflow	=	174.13 cfs @	12.64 hrs, Volume	= 28.547 af	Atten= 1%, Lag= 1.8 min
Primary	=	174.13 cfs @	12.64 hrs, Volume	= 28.547 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 534.93' @ 12.64 hrs Surf.Area= 11,204 sf Storage= 9,851 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.3 min (849.1 - 848.7)

Volume	Inv	ert Avai	I.Storage	Storage Description					
#1	533.	00'	25,714 cf	Custom Stage Da	ata (Irregular) List	ted below (Recalc)	l		
Elevatic (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
533.0 534.0 535.0 536.0	00 00 00 00	412 5,210 11,714 18,774	159.8 513.7 795.5 996.6	0 2,362 8,245 15,106	0 2,362 10,608 25,714	412 19,382 48,748 77,441			
Device	Routing	In	vert Outle	et Devices					
#1	Primary	532	.20' 144. L= 5 Inlet n= 0	0" W x 60.0" H Bc 1.5' CMP, square / Outlet Invert= 53 .024, Flow Area=	5x Culvert edge headwall, I 2.20' / 530.66' S 60.00 sf	Ke= 0.500 = 0.0299 '/' Cc= ().900		

Primary OutFlow Max=174.11 cfs @ 12.64 hrs HW=534.93' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 174.11 cfs @ 5.31 fps)

Summary for Pond 18P: Level Spreader

Inflow Area	ι =	19.937 ac,	92.58% Impe	ervious,	Inflow	Depth >	7.33"	for 10	0-Year e	event
Inflow	=	7.62 cfs @	14.63 hrs,	Volume	=	12.180	af			
Outflow	=	7.62 cfs @	14.64 hrs,	Volume	=	12.178	af, Att	en= 0%,	Lag= 0	.4 min
Primary	=	7.62 cfs @	14.64 hrs,	Volume	=	12.178	af		-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 558.00' Surf.Area= 2,625 sf Storage= 7,350 cf Peak Elev= 558.27' @ 14.64 hrs Surf.Area= 2,625 sf Storage= 7,632 cf (282 cf above start)

Plug-Flow detention time= 34.0 min calculated for 12.009 af (99% of inflow) Center-of-Mass det. time= 0.5 min (1,496.0 - 1,495.5)

Volume	Invert	Avail.Storage	Storage Description
#1	551.00'	8,400 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
			21,000 cf Overall x 40.0% Voids

Proposed

Prepared by HDR Inc	
HydroCAD® 10.00-19 s/n 05756	© 2016 HydroCAD Software Solutions LLC

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
551.00	2,625	0	0
556.00	2,625	13,125	13,125
557.00	2,625	2,625	15,750
558.00	2,625	2,625	18,375
559.00	2,625	2,625	21,000
Davias Daving	lovort	Outlet Deviees	

Device	Routing	Invert	Outlet Devices	
#1	Primary	558.00'	75.0" x 35.0" Horiz. Orifice/Grate	C= 0.600
			Limited to weir flow at low heads	

Primary OutFlow Max=7.62 cfs @ 14.64 hrs HW=558.27' TW=558.10' (Dynamic Tailwater) **1=Orifice/Grate** (Weir Controls 7.62 cfs @ 1.55 fps)

Summary for Pond 23P:

Inflow Area	=	0.805 ac, 7	'3.17% Impe	ervious, Inflow I	Depth = 7.7	0" for 100	-Year event
Inflow =	=	6.82 cfs @	12.06 hrs,	Volume=	0.516 af		
Outflow =	=	6.73 cfs @	12.08 hrs,	Volume=	0.516 af,	Atten= 1%,	Lag= 0.8 min
Primary =	=	0.23 cfs @	15.93 hrs,	Volume=	0.231 af		-
Secondary =	=	6.58 cfs @	12.08 hrs,	Volume=	0.286 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 532.01' @ 12.08 hrs Surf.Area= 1,041 sf Storage= 790 cf

Plug-Flow detention time= 8.6 min calculated for 0.516 af (100% of inflow) Center-of-Mass det. time= 8.6 min (781.2 - 772.6)

Volume	Invert	: Avail.S	Storage	Storage D	escription		
#1	527.33	1	793 cf	Custom S	tage Data (Irregu	Ilar) Listed below (F	Recalc)
Elevation (feet	n S t)	urf.Area (sq-ft)	Perim. (feet)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>
527.33 527.34 530.19 530.19 531.00 532.0	3 4 6 9 0 1	4 4 56 317 1,044	8.0 8.0 110.4 180.9 364.9	0.0 35.0 35.0 100.0 100.0 100.0	0 0 4 137 652	0 0 4 5 141 793	4 4 27 991 2,630 10,626
Device	Routing	Inve	ert Outle	et Devices			
#1	Primary Secondary	527.3 7 531.6	3' 2.5'' L= 1 Inlet n= 0 0' 30.0 Cv=	Round Cu 6.0' CPP, / Outlet Inv .013, Flow deg x 7.7' 2.61 (C= 3	Ilvert square edge hea rert= 527.33' / 527 Area= 0.03 sf Iong x 0.40' rise \$.26)	dwall, Ke= 0.500 7.17' S= 0.0100 '/' Sharp-Crested Vee	Cc= 0.900 / Trap Weir

Primary OutFlow Max=0.23 cfs @ 15.93 hrs HW=531.57' TW=527.61' (Dynamic Tailwater)

Secondary OutFlow Max=6.57 cfs @ 12.08 hrs HW=532.01' TW=530.29' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Orifice Controls 6.57 cfs @ 2.10 fps)

Summary for Pond 24P: Flow Splitter

Inflow Area	=	16.505 ac,10	0.00% Impervious,	Inflow Depth = 8.4	46" for 100-Year event
Inflow	=	134.52 cfs @	12.10 hrs, Volume=	= 11.636 af	
Outflow	=	134.52 cfs @	12.10 hrs, Volume=	= 11.636 af,	Atten= 0%, Lag= 0.0 min
Primary	=	33.99 cfs @	12.10 hrs, Volume=	= 8.655 af	-
Secondary	=	100.53 cfs @	12.10 hrs, Volume=	= 2.980 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 570.34' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	562.96'	24.0" Round Culvert
	-		L= 44.7' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 562.96' / 562.00' S= 0.0215 '/' Cc= 0.900
			n= 0.013, Flow Area= 3.14 sf
#2	Secondary	562.96'	48.0" Round Culvert
			L= 106.2' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 562.96' / 562.43' S= 0.0050 '/' Cc= 0.900
			n= 0.013, Flow Area= 12.57 sf
#3	Device 2	565.70'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=33.98 cfs @ 12.10 hrs HW=570.34' TW=565.30' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 33.98 cfs @ 10.82 fps)

Secondary OutFlow Max=100.46 cfs @ 12.10 hrs HW=570.34' TW=561.68' (Dynamic Tailwater) 2=Culvert (Passes 100.46 cfs of 140.16 cfs potential flow) 3=Sharp-Crested Rectangular Weir (Weir Controls 100.46 cfs @ 7.05 fps)

Summary for Pond 28P: Ramp Culvert

Inflow Area	ι =	0.918 ac,	72.44% Impe	ervious,	Inflow Depth	= 7.6	2" for 100)-Year event
Inflow	=	6.75 cfs @	12.12 hrs,	Volume	= 0.5	83 af		
Outflow	=	6.71 cfs @	12.13 hrs,	Volume	= 0.5	82 af,	Atten= 0%,	Lag= 0.6 min
Primary	=	6.71 cfs @	12.13 hrs,	Volume	= 0.5	82 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 556.03' @ 12.13 hrs Surf.Area= 350 sf Storage= 196 cf Flood Elev= 557.00' Surf.Area= 534 sf Storage= 342 cf

Plug-Flow detention time= 1.2 min calculated for 0.582 af (100% of inflow) Center-of-Mass det. time= 0.9 min (780.0 - 779.1)

Proposed

Prepared by HDR Inc

Page 65

Volume	Inv	ert Avai	I.Storage	Storage Descripti	on				
#1	554.0	61'	342 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)			
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
554.6 555.0 556.0 556.3	61 00 00 36	4 56 337 534	8.0 45.8 150.1 184.0	0 10 177 155	0 10 187 342	4 166 1,795 2,698			
Device	Routing	In	vert Outle	et Devices					
#1	Primary	y 555.00' 23.0' L= 3 Inlet n= 0		 W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14 0.0' RCP, groove end projecting, Ke= 0.200 t / Outlet Invert= 555.00' / 553.62' S= 0.0460 '/' Cc= 0.900 0.013, Flow Area= 1.83 sf 					

Primary OutFlow Max=6.71 cfs @ 12.13 hrs HW=556.03' TW=554.25' (Dynamic Tailwater) **1=RCP_Elliptical 23x14** (Inlet Controls 6.71 cfs @ 3.96 fps)

Summary for Pond 29P: Gravel Inlet Trench

Inflow Area	ι =	1.259 ac, 7	1.41% Impe	ervious,	Inflow D	epth =	7.58'	' for 100	-Year event	
Inflow	=	8.38 cfs @	12.12 hrs,	Volume	=	0.795	af			
Outflow	=	8.38 cfs @	12.12 hrs,	Volume	=	0.795	af, A	tten= 0%,	Lag= 0.0 mir	ſ
Primary	=	8.38 cfs @	12.12 hrs,	Volume	=	0.795	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 541.84' @ 12.13 hrs Surf.Area= 4 sf Storage= 5 cf

Plug-Flow detention time= 0.2 min calculated for 0.795 af (100% of inflow) Center-of-Mass det. time= 0.0 min (779.7 - 779.7)

Volume	Invert	Avail.Stora	age	Storage Description
#1	538.25'	14	4 cf	2.00'W x 2.00'L x 9.75'H Prismatoid 39 cf Overall x 35.0% Voids
Device	Routing	Invert	Outle	t Devices
#1	Primary	538.25'	15.0'' L= 25 Inlet / n= 0.	Round Culvert 5.0' RCP, square edge headwall, Ke= 0.500 'Outlet Invert= 538.25' / 538.00' S= 0.0100 '/' Cc= 0.900 013, Flow Area= 1.23 sf

Primary OutFlow Max=8.33 cfs @ 12.12 hrs HW=541.83' TW=539.84' (Dynamic Tailwater) -1=Culvert (Inlet Controls 8.33 cfs @ 6.79 fps)

Summary for Pond 30P: Culvert 2

Inflow Area	ι =	1.380 ac,	0.00% Impervious,	Inflow Depth =	5.92" for 100	D-Year event
Inflow	=	6.85 cfs @	12.24 hrs, Volume	= 0.681 a	af	
Outflow	=	6.85 cfs @	12.24 hrs, Volume	= 0.681 a	af, Atten= 0% ,	Lag= 0.0 min
Primary	=	6.85 cfs @	12.24 hrs, Volume	= 0.681 a	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 535.14' @ 12.24 hrs Flood Elev= 534.87'

Device	Routing	Invert	Outlet Devices
#1	Primary	533.66'	23.0" W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14 L= 24.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 533.66' / 533.54' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 1.83 sf

Primary OutFlow Max=6.85 cfs @ 12.24 hrs HW=535.14' TW=534.21' (Dynamic Tailwater) ☐ 1=RCP_Elliptical 23x14 (Inlet Controls 6.85 cfs @ 3.75 fps)

Summary for Pond 31P: Culvert 3

Inflow Area	a =	0.544 ac, 7	73.53% Impe	ervious,	Inflow Depth :	= 7.7	74" for 100)-Year event
Inflow	=	4.65 cfs @	12.06 hrs,	Volume	= 0.35	1 af		
Outflow	=	4.65 cfs @	12.06 hrs,	Volume	= 0.35	1 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	4.65 cfs @	12.06 hrs,	Volume	= 0.35	1 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 534.01' @ 12.06 hrs Flood Elev= 538.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	533.00'	23.0" W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14
			L= 24.0' RCP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 533.00' / 532.35' S= 0.0271 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.83 sf

Primary OutFlow Max=4.65 cfs @ 12.06 hrs HW=534.01' TW=533.02' (Dynamic Tailwater) -1=RCP_Elliptical 23x14 (Inlet Controls 4.65 cfs @ 2.77 fps)

Summary for Link 21L: Point A

Inflow A	rea =	27.710 ac, 6	6.61% Impe	ervious,	Inflow Dep	oth > 6.9	93" for	100-Year event
Inflow	=	39.67 cfs @	12.29 hrs,	Volume	= 16	6.009 af		
Primary	=	39.67 cfs @	12.29 hrs,	Volume	= 16	6.009 af,	Atten= 0	%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 22L: Point B

Inflow Area =57.525 ac, 3.12% Impervious, Inflow Depth =5.96" for 100-Year eventInflow =174.13 cfs @12.64 hrs, Volume=28.547 afPrimary =174.13 cfs @12.64 hrs, Volume=28.547 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 28L: Point F

Inflow /	Area	=	5.040 ac,	0.00% Impervious,	Inflow Depth = 5.9	92" for 100-Year event
Inflow		=	16.28 cfs @	12.57 hrs, Volume	= 2.486 af	
Primar	у	=	16.28 cfs @	12.57 hrs, Volume	= 2.486 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Subcatchment 6S: Exist DA at Point E

Runoff = 137.39 cfs @ 17.72 hrs, Volume= 99.250 af, Depth= 2.54"

Area	(ac) C	N Des	cription		
467.	119	77 Woo	ods, Good,	HSG D	
1.	860	98 Pav	ed parking	, HSG D	
468.	979	77 Wei	ghted Aver	age	
467.	119	99.6	0% Pervio	us Area	
1.	860	0.40	% Impervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.1	80	0.0480	0.26		Sheet Flow,
					Range n= 0.130 P2= 3.30"
391.3	7,875	0.0180	0.34		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
34.5	3,919	0.0130	1.90	182.01	Channel Flow,
					Area= 96.0 sf Perim= 81.1' r= 1.18'
					n= 0.100 Very weedy reaches w/pools
430.9	11,874	Total			

Summary for Subcatchment 6S: Exist DA at Point E

Runoff = 324.81 cfs @ 17.71 hrs, Volume= 231.369 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

_	Area	(ac) C	N Des	cription		
	467.	119	77 Woo	ods, Good,	HSG D	
_	1.	860	98 Pave	ed parking	, HSG D	
	468.	979	77 Wei	ghted Aver	age	
	467.	119	99.6	0% Pervio	us Area	
	1.	860	0.40	% Impervi	ous Area	
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.1	80	0.0480	0.26		Sheet Flow,
						Range n= 0.130 P2= 3.30"
	391.3	7,875	0.0180	0.34		Shallow Concentrated Flow,
						Forest w/Heavy Litter Kv= 2.5 fps
	34.5	3,919	0.0130	1.90	182.01	Channel Flow,
						Area= 96.0 sf Perim= 81.1' r= 1.18'
_						n= 0.100 Very weedy reaches w/pools
	100 0	44 074	Tatal			

430.9 11,874 Total

Summary for Subcatchment 1S: Main Site

Runoff = 75.45 cfs @ 12.10 hrs, Volume= 6.414 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area	(ac) C	N Desc	cription		
16.	505 9	8 Pave	ed parking	, HSG D	
16.	505	100.	00% Impe	rvious Area	L
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.3	158	0.0100	1.16		Sheet Flow,
0.5	135	0.0025	4.18	20.51	Smooth surfaces n= 0.011 P2= 3.30" Pipe Channel, 130-131 30.0" Bound Area= 4.9 sf. Perim= 7.9' r= 0.63'
0.4	110	0.0025	4.72	33.35	n= 0.013 Pipe Channel, 131-132
0.3	79	0 0025	4 72	33 35	36.0" Round Area= 7.1 st Perim= 9.4' r= 0.75' n= 0.013 Pipe Channel, 132-133
0.0	10	0.0020		00.00	36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75' n= 0.013
0.8	246	0.0025	5.23	50.30	Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'
0.4	133	0.0025	5.23	50.30	Pipe Channel, 134-135 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'
0.6	182	0.0025	5.23	50.30	n= 0.013 Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'
0.7	256	0.0025	5.72	71.82	n= 0.013 Pipe Channel, 136-137 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
0.7	233	0.0025	5.72	71.82	n= 0.013 Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
0.4	130	0.0025	5.72	71.82	n= 0.013 Pipe Channel, 138-139 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
0.3	113	0.0025	5.72	71.82	n= 0.013 Pipe Channel, 139-Outlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013

7.4 1,775 Total

Summary for Subcatchment 9S: DA to Point E

Page 3

Runoff 109.77 cfs @ 17.72 hrs, Volume= 79.298 af, Depth= 2.54" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Α	rea (sf)	CN E	Description		
16,3	22,075	77 V	Voods, Go	od, HSG D	
16,322,075		1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.1	80	0.0480	0.26		Sheet Flow,
					Range n= 0.130 P2= 3.30"
391.3	7,875	0.0180	0.34		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
34.5	3,919	0.0130	1.90	182.01	Channel Flow,
					Area= 96.0 sf Perim= 81.1' r= 1.18'
					n= 0.100 Very weedy reaches w/pools

430.9 11,874 Total

Summary for Subcatchment 10S: Forebay Area

Runoff 1.36 cfs @ 12.07 hrs, Volume= 0.094 af, Depth= 3.18" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

 Area (a	ac)	CN	Desc	ription				
 0.2	68	80	>75%	6 Grass co	over, Good	, HSG D		
 0.0	86	98	Wate	er Surface,	, HSG D			
 0.3	54	84	Weig	hted Aver	age			
0.2	68		75.7	1% Pervio	us Area			
0.0	86		24.29	9% Imperv	rious Area			
 Tc I (min)	Lengtł (feet	ר נ)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
5.0						Direct Entry,		

Summary for Subcatchment 11S: Gravel WVTS Area

Runoff = 4.90 cfs @ 12.07 hrs, Volume= 0.346 af, Depth= 3.68"

Pt E-Prop_Dn_Stream

Type III 24-hr 10-Year Rainfall=4.90" Printed 9/14/2017 S LLC Page 4

Prepared by HDR Inc	
HydroCAD® 10.00-19 s/n 05756	© 2016 HydroCAD Software Solutions LLC

Area	(ac)	CN	Desc	cription		
0.	605	98	Wate	er Surface	, HSG D	
0.	296	80	>75%	6 Grass co	over, Good	I, HSG D
0.	228	77	Woo	ds, Good,	HSG D	
1.	129	89	Weig	phted Aver	age	
0.	524		46.4	1% Pervio	us Area	
0.	605		53.5	9% Imperv	vious Area	
Tc (min)	Leng (fee	th : et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0						Direct Entry,

Summary for Subcatchment 12S: Subcat for Swale - 1

Runoff = 4.01 cfs @ 12.08 hrs, Volume= 0.297 af, Depth= 3.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

	Area	(ac)	CN	Desc	cription		
	0.	253	74	>75%	6 Grass co	over, Good,	, HSG C
*	0.	665	98	Pave	ed parking	, HSG C	
	0.	918	91	Weig	ghted Aver	age	
	0.	253		27.5	6% Pervio	us Area	
	0.	665		72.4	4% Imperv	vious Area	
	Тс	Lengt	h S	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	6.0	99	30.	.1266	2.77		Lag/CN Method,

Summary for Subcatchment 13S: Pond

Runoff = 8.98 cfs @ 12.07 hrs, Volume= 0.648 af, Depth= 3.99"

	Area (ac)	CN	Desc	cription			
	1.2	261	98	Wate	er Surface	, HSG C		
	0.6	524	80	>75%	6 Grass co	over, Good	, HSG D	
_	0.0)64	77	Woo	ds, Good,	HSG D		
	1.9	949	92	Weig	phted Aver	age		
	0.6	588		35.3	0% Pervio	us Area		
	1.2	261		64.70	0% Imperv	vious Area		
	_	_						
	Тс	Leng	th	Slope	Velocity	Capacity	Description	
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
	5.0						Direct Entry,	

Summary for Subcatchment 16S: DA to Entr. Culvert

Runoff = 6.55 cfs @ 12.26 hrs, Volume= 0.676 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area	(ac) (CN	Desc	ription		
3.	168	77	Woo	ds, Good,	HSG D	
0.	028	98	Pave	d parking,	HSG D	
3.	196	77	Weig	hted Aver	age	
3.	168		99.12	2% Pervio	us Area	
0.	028		0.88	% Impervio	ous Area	
Tc (min)	Length (feet)	S	lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
18.9	1,034	0.0	0359	0.91		Lag/CN Method,

Summary for Subcatchment 18S: Subcat to Point B

Runoff = 70.88 cfs @ 12.66 hrs, Volume= 11.238 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"

Area	(ac)	CN	Desc	cription		
52.	205	77	Woo	ds, Good,	HSG D	
0.	898	98	Pave	ed parking,	HSG D	
53.	103	77	Weig	ghted Aver	age	
52.	205		98.3	1% Pervio	us Area	
0.	898		1.699	% Impervio	ous Area	
Та	Lonath			Valaaitu	Consoitu	Description
IC (recipe)	Lengu		siope		Capacity	Description
<u>(mn)</u>	(ieet)	(11/11)	(IL/Sec)	(CIS)	
47.5	3,073	30.	0324	1.08		Lag/CN Method,

Summary for Subcatchment 19S: Subcat for Swale - 2

Runoff = 2.77 cfs @ 12.03 hrs, Volume= 0.181 af, Depth= 3.99"

	Area (ac)	CN	Description
	0.400	98	Water Surface, HSG C
*	0.144	74	>75% Grass cover, Good, HSG C
	0.544	92	Weighted Average
	0.144		26.47% Pervious Area
	0.400		73.53% Impervious Area

Pt E-Pr	op_Dn_	Stream			Type III 24-hr 10-Year Rainfall=4.90								
Prepare	ed by HD	R Inc			Printed 9/14/2017								
HydroCA	D® 10.00	-19 s/n 05	5756 © 20 ⁻	16 HydroCA	AD Software Solutions LLC Page 6								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description								
2.3	313	0.1239	2.27		Lag/CN Method,								
	Summary for Subcatchment 20S: Wetlands												
				,									
Runoff	=	15.41 cfs	s@ 12.2	9 hrs, Volu	ume= 1.645 af, Depth= 2.54"								
Runoff b Type III :	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Fype III 24-hr 10-Year Rainfall=4.90"												
Area	(ac) C	N Desc	cription										
7.	.773 7	7 Woo	ds, Good,	HSG D									
7.	.773	100.	00% Pervi	ous Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description								
20.6	1,002	0.0286	0.81		Lag/CN Method,								
			Summa	ary for Su	ubcatchment 23S: Point D								
Runoff	= .	137.55 cfs	s@ 12.4	4 hrs, Volu	ume= 17.681 af, Depth= 2.54"								
Runoff b Type III :	y SCS TF 24-hr 10-	R-20 meth Year Rai	nod, UH=S nfall=4.90'	SCS, Weigh	hted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs								
A	rea (sf)	CN D	escription										
3,6	39,264	77 V	Voods, Go	od, HSG D									
3,6	39,264	1	00.00% Pe	ervious Are	ea								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description								
31.3	3,135	0.0772	1.67		Lag/CN Method,								
		9	Summar	y for Sub	ocatchment 24S: DA for 25R								
Runoff	=	1.41 cfs	s@ 12.5	1 hrs, Volu	ume= 0.194 af, Depth= 2.54"								

Area (ac)	CN	Description
0.916	77	Woods, Good, HSG D
0.916		100.00% Pervious Area

Pt E-Prop_Dn_Stream Prepared by HDR Inc	<i>Type III 24-hr 10-Year Rainfall=4.90"</i> Printed 9/14/2017										
HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD S	Software Solutions LLC Page 7										
Tc Length Slope Velocity Capacity D (min) (feet) (ft/ft) (ft/sec) (cfs)	escription										
36.2 1,580 0.0192 0.73 La	ag/CN Method,										
Summary for Subcatchment 25S: Rerouted Area											
Runoff = 2.96 cfs @ 12.23 hrs, Volume	e= 0.292 af, Depth= 2.54"										
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.90"											
Area (ac) CN Description											
1.380 77 Woods, Good, HSG D											
1.380 100.00% Pervious Area											
Tc Length Slope Velocity Capacity D (min) (feet) (ft/ft) (ft/sec) (cfs)	escription										
16.9 734 0.0260 0.73 La	ag/CN Method,										
Summary for Subcatchm	ent 26S: Subcat for Swale - 2										
Runoff = 1.67 cfs @ 12.03 hrs, Volume	e= 0.107 af, Depth= 3.78"										
Runoff by SCS TR-20 method, UH=SCS, Weighted Type III 24-hr 10-Year Rainfall=4.90"	I-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs										
Area (ac) CN Description											
* 0.234 98 Paved parking, HSG D 0.107 74 >75% Grass cover, Good, H	SG C										
0.34190Weighted Average0.10731.38% Pervious Area0.23468.62% Impervious Area											
Tc Length Slope Velocity Capacity D (min) (feet) (ft/ft) (ft/sec) (cfs)	escription										
2.3 293 0.1266 2.08 La	ag/CN Method,										
Summary for Subcatchment 27S: DA for Point F											

Runoff = 7.01 cfs @ 12.61 hrs, Volume= 1.067 af, Depth= 2.54"

Area (ac)	CN	Description
5.040	77	Woods, Good, HSG D
5.040		100.00% Pervious Area

Pt E-Prop_Dn_Stream			Type III 24-hr 10-Ye	ear Rainfall=4.90"
Prepared by HDR Inc				Printed 9/14/2017
HydroCAD® 10.00-19 s/n 05	<u>756 © 2016 Hyc</u>	IroCAD Software	Solutions LLC	Page 8
Tc Length Slope (min) (feet) (ft/ft)	Velocity Capa (ft/sec)	acity Descriptio (cfs)	n	
44.0 2,185 0.0219	0.83	Lag/CN M	ethod,	
- ,		- 3	,	
Sum	mary for Su	bcatchment 2	9S: Rerouted Area B	
Runoff = 1.98 cfs	@ 12.20 hrs,	Volume=	0.183 af, Depth= 2.54"	
Runoff by SCS TR-20 meth	od, UH=SCS, V	Veighted-CN, Tir	ne Span= 0.00-48.00 hrs, dt=	= 0.01 hrs
Type III 24-hr 10-Year Rain	fall=4.90"			
Area (sf) CN De	escription			
37.749 77 W	oods. Good. H	SG D		
37,749 10	0.00% Perviou	s Area		
To Longth Oland		a situ - Da a si sti a		
(min) (feet) (ft/ft)	(ft/sec)	acity Descriptio (cfs)	n	
14.3 599 0.0260	0.70	Lag/CN M	ethod,	
Sumn	harv for Subo	catchment 349	S: Subcat for Swale - 4	
••••				
Runoff = 1.31 cfs	@ 12.03 hrs,	Volume=	0.084 af, Depth= 3.89"	
Runoff by SCS TR-20 methor Type III 24-hr 10-Year Rain	od, UH=SCS, V fall=4.90"	Veighted-CN, Tir	ne Span= 0.00-48.00 hrs, dt=	= 0.01 hrs
Area (ac) CN Desc	ription			
* 0.072 74 >75%	Grass cover, 0	Good, HSG C		
<u>* 0.189 98 Pave</u>	d parking, HSG	C		
0.261 91 Weig	hted Average			
0.072 27.59	% Pervious Are	ea Area		
0.100 72.41		ii Ca		
Tc Length Slope	Velocity Capa	acity Descriptio	n	

(min) (feet) (ft/ft) (ft/sec) (cfs) 2.2 292 0.1265 2.17 Lag/CN Method,

Summary for Reach 8R: Level Spreader

Inflow /	Area =	=	19.937 ac, 9	92.58% Imp	ervious,	Inflow De	epth > 4.	16" for 10-	Year event
Inflow	=	:	3.08 cfs @	18.09 hrs,	Volume	=	6.915 af		
Outflow	v =	:	3.08 cfs @	18.10 hrs,	Volume	=	6.913 af,	Atten= 0%,	Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.72 fps, Min. Travel Time= 1.1 min Avg. Velocity = 0.57 fps, Avg. Travel Time= 1.4 min

Peak Storage= 206 cf @ 18.10 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 1.00' Flow Area= 105.0 sf, Capacity= 439.80 cfs 75.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 30.0 '/' Top Width= 135.00' Length= 48.0' Slope= 0.0100 '/' Inlet Invert= 558.00', Outlet Invert= 557.52' ‡ Summary for Reach 15R: Dry Swale - 1 Inflow Area = 0.918 ac, 72.44% Impervious, Inflow Depth = 3.89" for 10-Year event Inflow 4.01 cfs @ 12.08 hrs, Volume= 0.297 af = 3.47 cfs @ 12.13 hrs, Volume= Outflow 0.297 af, Atten= 13%, Lag= 2.8 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.05 fps, Min. Travel Time= 4.9 min Avg. Velocity = 0.87 fps, Avg. Travel Time= 17.3 min Peak Storage= 1,028 cf @ 12.13 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 87.10 cfs 2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 904.0' Slope= 0.0190 '/' Inlet Invert= 572.17', Outlet Invert= 555.00'

Summary for Reach 18R: Dry Swale - 3

Inflow Area	a =	0.544 ac, 7	73.53% Impe	ervious,	Inflow Depth :	= 3.9	99" foi	r 10-Y	ear event	
Inflow	=	2.77 cfs @	12.03 hrs,	Volume	= 0.18	1 af				
Outflow	=	2.41 cfs @	12.07 hrs,	Volume	= 0.18	1 af,	Atten=	13%,	Lag= 2.1 r	min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.34 fps, Min. Travel Time= 3.9 min Avg. Velocity = 0.57 fps, Avg. Travel Time= 16.1 min

Pt E-Prop Dn Stream Type II	'll 24-hr 10-Year Rainfall=4.90'
Prepared by HDR Inc	Printed 9/14/2017
HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC	Page 10

Peak Storage= 565 cf @ 12.07 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 54.76 cfs

6.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 550.0' Slope= 0.0273 '/' Inlet Invert= 548.05', Outlet Invert= 533.01'

Summary for Reach 20R: Dry Swale - 4

Inflow Ar	ea =	0.805 ac, 7	73.17% Impe	ervious,	Inflow	Depth =	3.9	6" for	10-`	Year e	vent
Inflow	=	3.59 cfs @	12.05 hrs,	Volume	=	0.265	af				
Outflow	=	3.52 cfs @	12.07 hrs,	Volume	=	0.265	af,	Atten= 2	2%,	Lag=	1.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.52 fps, Min. Travel Time= 1.3 min Avg. Velocity = 0.70 fps, Avg. Travel Time= 4.7 min

Peak Storage= 277 cf @ 12.07 hrs Average Depth at Peak Storage= 0.47' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 66.01 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 198.0' Slope= 0.0109 '/' Inlet Invert= 532.35', Outlet Invert= 530.19'

Summary for Reach 21R: Point C

Inflow Area	a =	4.001 ac, 1	15.42% Impe	ervious,	Inflow De	epth =	2.8	2" for 10	-Year event
Inflow	=	8.29 cfs @	12.24 hrs,	Volume	=	0.942 a	af		
Outflow	=	8.29 cfs @	12.24 hrs,	Volume	=	0.942 a	af,	Atten= 0%,	Lag= 0.3 min

Pt E-Prop_Dn_Stream Type Prepared by HDR Inc HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.90" Printed 9/14/2017 S LLC Page 11

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.00 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.85 fps, Avg. Travel Time= 1.5 min

Peak Storage= 214 cf @ 12.24 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 240.09 cfs

9.00' x 2.00' deep channel, n= 0.024 Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 77.4' Slope= 0.0136 '/' Inlet Invert= 526.65', Outlet Invert= 525.60'

‡

Summary for Reach 23R: Rerouting Ditch 1

Inflow Area =1.380 ac, 0.00% Impervious, Inflow Depth = 2.54" for 10-Year eventInflow =2.96 cfs @ 12.23 hrs, Volume=0.292 afOutflow =2.95 cfs @ 12.24 hrs, Volume=0.292 af, Atten= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.94 fps, Min. Travel Time= 1.0 min Avg. Velocity = 0.98 fps, Avg. Travel Time= 2.9 min

Peak Storage= 172 cf @ 12.24 hrs Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 20.18 cfs

2.00' x 1.00' deep channel, n= 0.025 Earth, clean & winding Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 171.0' Slope= 0.0137 '/' Inlet Invert= 536.00', Outlet Invert= 533.66'

Summary for Reach 25R: Ditch

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.80 fps, Min. Travel Time= 2.4 min Avg. Velocity = 0.67 fps, Avg. Travel Time= 6.5 min

Peak Storage= 205 cf @ 12.54 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 60.53 cfs

2.00' x 2.00' deep channel, n= 0.025 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 262.2' Slope= 0.0064 '/' Inlet Invert= 540.67', Outlet Invert= 539.00'

Summary for Reach 29R: Dry Swale - 2

Inflow Ar	rea =	1.259 ac, 71.41% Impervious, Inf	flow Depth = 3.85" for 10-Year event	
Inflow	=	4.33 cfs @ 12.11 hrs, Volume=	0.404 af	
Outflow	=	4.30 cfs @ 12.12 hrs, Volume=	0.404 af, Atten= 1%, Lag= 1.0 mir	۱

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.33 fps, Min. Travel Time= 1.4 min Avg. Velocity = 0.98 fps, Avg. Travel Time= 4.7 min

Peak Storage= 353 cf @ 12.12 hrs Average Depth at Peak Storage= 0.45' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 90.04 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 273.0' Slope= 0.0203 '/' Inlet Invert= 553.62', Outlet Invert= 548.08'

Summary for Reach 30R: Rerouted Ditch below Culvert

Inflow Area =2.247 ac, 0.00% Impervious, Inflow Depth =2.54" for 10-Year eventInflow =4.88 cfs @12.22 hrs, Volume=0.475 afOutflow =4.87 cfs @12.24 hrs, Volume=0.475 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.99 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.33 fps, Avg. Travel Time= 2.7 min

Peak Storage= 259 cf @ 12.24 hrs Average Depth at Peak Storage= 0.43' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 25.17 cfs

2.00' x 1.00' deep channel, n = 0.013Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 212.0' Slope= 0.0058 '/' Inlet Invert= 533.54', Outlet Invert= 532.32'

Summary for Pond 2P: Forebay

Inflow Area =	16.859 ac, 98.41% Impervious, Inflow De	epth = 3.79" for 10-Year event
Inflow =	27.95 cfs @ 12.10 hrs, Volume=	5.323 af
Outflow =	27.83 cfs @ 12.11 hrs, Volume=	5.320 af, Atten= 0%, Lag= 0.7 min
Primary =	5.36 cfs @ 11.70 hrs, Volume=	4.011 af
Secondary =	23.18 cfs @ 12.11 hrs, Volume=	1.309 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 3,802 sf Storage= 3,789 cf Peak Elev= 565.24' @ 12.11 hrs Surf.Area= 5,806 sf Storage= 24,063 cf (20,274 cf above start) Flood Elev= 568.00' Surf.Area= 7,249 sf Storage= 42,057 cf (38,268 cf above start)

Plug-Flow detention time= 63.1 min calculated for 5.232 af (98% of inflow) Center-of-Mass det. time= 41.9 min (797.7 - 755.8)

Volume	Invert	Avail.Storage	Storage Description
#1	558.00'	49,579 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Pt E-Prop Dn Stream

Type III 24-hr 10-Year Rainfall=4.90" Printed 9/14/2017

Prepared by HDR I	nc				
HydroCAD® 10.00-19	s/n 05756	© 2016 HydroCAD	Software	Solutions LL	С

Page 14

Elevatic (fee	on S et)	Surf.Area (sq-ft)	Perim. (feet)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
558.0	00	2,536	269.1	0.0	0	0	2,536
559.0	00	2,944	279.8	40.0	1,095	1,095	3,078
560.0	00	3,366	290.5	40.0	1,261	2,356	3,641
561.0	00	3,802	301.2	40.0	1,433	3,789	4,225
562.0	00	4,252	312.0	100.0	4,025	7,814	4,835
563.0	00	4,716	322.7	100.0	4,482	12,296	5,462
564.0	00	5,194	333.4	100.0	4,953	17,249	6,110
565.0	00	5,687	344.1	100.0	5,439	22,687	6,779
566.0	00	6,193	354.8	100.0	5,938	28,626	7,469
567.0	00	6,714	365.5	100.0	6,452	35,077	8,180
568.0	00	7,249	376.2	100.0	6,980	42,057	8,912
569.0	00	7,798	386.9	100.0	7,522	49,579	9,666
Device	Routing	Inve	rt Outle	et Devices	;		
#1	Primary	558.00	0' 12.0'	' Round	Culvert		
	2		L= 2	0.0' CPP	, projecting, no hea	dwall, Ke= 0.900	
			Inlet	/ Outlet In	vert= 558.00' / 558	.00' S= 0.0000 '/'	Cc= 0.900
			n= 0	.013, Flov	v Area= 0.79 sf		
#2	Secondar	ry 565.00	0' 60.0' 3.0' (l ong Sha Crest Heig	r p-Crested Rectan Jht	gular Weir 2 End	Contraction(s)

Primary OutFlow Max=5.35 cfs @ 11.70 hrs HW=565.11' TW=561.90' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 5.35 cfs @ 6.81 fps)

Secondary OutFlow Max=23.18 cfs @ 12.11 hrs HW=565.24' TW=562.84' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir (Weir Controls 23.18 cfs @ 1.62 fps)

Summary for Pond 3P: Gravel WVTS

Inflow Area	=	17.988 ac, 9	5.60% Impervious,	Inflow Depth =	3.78" for	10-Year event
Inflow	=	32.38 cfs @	12.10 hrs, Volume	e= 5.665	af	
Outflow	=	23.97 cfs @	12.24 hrs, Volume	e= 5.648	af, Atten=	26%, Lag= 8.8 min
Primary	=	23.97 cfs @	12.24 hrs, Volume	e= 5.648	af	
Secondary	=	0.00 cfs @	0.00 hrs, Volume	e= 0.000	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 22,959 sf Storage= 27,438 cf Peak Elev= 562.95' @ 12.24 hrs Surf.Area= 24,875 sf Storage= 74,094 cf (46,656 cf above start) Flood Elev= 568.00' Surf.Area= 30,084 sf Storage= 212,684 cf (185,246 cf above start)

Plug-Flow detention time= 229.6 min calculated for 5.018 af (89% of inflow) Center-of-Mass det. time= 114.9 min (912.4 - 797.5)

Volume	Invert	Avail.Storage	Storage Description
#1	558.00'	243,305 cf	Custom Stage Data (Irregular) Listed below (Recalc)
Type III 24-hr 10-Year Rainfall=4.90" Printed 9/14/2017

Prepared by HDR Inc

HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Page 15

Elevatio	n S	Surf.Area	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
(feet	.)	(sq-ft)	(feet)	(%)	(cubic-feet)	(cubic-feet)	(sq-ft)
558.0	0	22,771	626.2	0.0	0	0	22,771
559.0	0	22,834	626.9	40.0	9,121	9,121	23,401
560.0	0	22,897	627.7	40.0	9,146	18,267	24,034
561.0	0	22,959	628.5	40.0	9,171	27,438	24,667
562.0	0	23,935	639.2	100.0	23,445	50,884	25,919
563.0	0	24,924	649.9	100.0	24,428	75,312	27,192
564.0	0	25,928	660.6	100.0	25,424	100,736	28,486
565.0	0	26,947	671.3	100.0	26,436	127,172	29,801
566.0	0	27,978	682.1	100.0	27,461	154,633	31,146
567.0	0	29,024	692.8	100.0	28,499	183,132	32,504
568.0	0	30,084	703.5	100.0	29,552	212,684	33,883
569.0	0	31,161	714.3	100.0	30,621	243,305	35,293
Device	Routing	Inver	t Outle	et Devices			
#1	Primary	558.00	' 36.0'	' Round C	ulvert		
	-		L= 20	0.0' CMP,	square edge head	dwall, Ke= 0.500	
			Inlet	/ Outlet Inv	vert= 558.00' / 558	.00' S= 0.0000 '/'	Cc= 0.900
			n= 0.	.013, Flow	Area= 7.07 sf		
#2	Device 1	561.00	' 12.0'	' Vert. Orif	ice/Grate X 2.00	C= 0.600	
#3	Device 2	558.00	' 12.0'	' Vert. Orif	ice/Grate C= 0.6	600	
#4	Device 1	562.50	' 60.0'	' x 30.0" H	oriz. Orifice/Grate	e C= 0.600	
			Limit	ed to weir f	flow at low heads		
#5	Device 2	562.50	60.0'	' x 30.0" H	oriz. Orifice/Grate	e C= 0.600	
			Limit	ed to weir f	flow at low heads		
#6	Secondary	y 564.00	' 100.0)' long Sha	arp-Crested Recta	ngular Weir 2 En	d Contraction(s)
	-		5.0' (Crest Heigh	nt	-	
				•			
Primary	OutFlow 1	Max=23.97 c	is @ 12	.24 hrs HV	V=562.95' TW=56	0.17' (Dynamic T	ailwater)
T-1=Cul	vert (Pass	ses 23.97 cfs	of 56.8	1 cfs poten	tial flow)	· -	

___2=Orifice/Grate (Orifice Controls 9.11 cfs @ 5.80 fps)

3=Orifice/Grate (Passes < 5.28 cfs potential flow)

5=Orifice/Grate (Passes < 14.86 cfs potential flow)

-4=Orifice/Grate (Weir Controls 14.86 cfs @ 2.20 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=561.00' TW=558.00' (Dynamic Tailwater) -6=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4P: DP-1

Inflow Area	=	19.937 ac, 9	2.58% Impe	ervious,	Inflow	Depth >	4.5	0" for	· 10-Y	ear eve	ent	
Inflow	=	74.97 cfs @	12.11 hrs,	Volume	=	7.481	af					
Outflow	=	3.08 cfs @	18.08 hrs,	Volume	=	6.916	af, .	Atten=	96%,	Lag= 3	358.3 mi	n
Primary	=	3.08 cfs @	18.08 hrs,	Volume	=	6.916	af			-		
Secondary	=	0.00 cfs @	0.00 hrs,	Volume	=	0.000	af					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 561.70' @ 18.08 hrs Surf.Area= 55,296 sf Storage= 190,514 cf Flood Elev= 565.00' Surf.Area= 62,400 sf Storage= 384,495 cf

Plug-Flow detention time= 760.3 min calculated for 6.915 af (92% of inflow)

Pt E-Prop_Dn_Stream

Prepared by HDR Inc

HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

 Type III 24-hr
 10-Year Rainfall=4.90"

 Printed
 9/14/2017

 s LLC
 Page 16

Center-of-Mass det. time= 705.3 min (1,577.1 - 871.8)

Volume	Invert	Avail.St	orage	Storage Description	l				
#1	558.00'	651,9	999 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)			
		(A							
Elevatio	n Sur	T.Area	Perim.	Inc.Store	Cum.Store	wet.Area			
(feet	[)	(sq-ft)	(feet)	(Cubic-feet)	(cubic-feet)	<u>(sq-tt)</u>			
558.0	0 4	17,688	883.6	0	0	47,688			
559.0	0 4	19,705	899.0	48,693	48,693	50,047			
560.0	0 5	51,750	914.4	50,724	99,417	52,448			
561.0	0 5	53,824	929.8	52,784	152,201	54,888			
562.0	05	55,926	945.2	54,872	207,072	57,370			
563.0	05	58,056	960.6	56,988	264,060	59,893			
564.0	06	60,214	976.1	59,132	323,192	62,470			
565.0	06	62,400	991.5	61,304	384,495	65,075			
566.0	06	64,615 1	,006.9	63,504	448,000	67,720			
567.0	06	6,858 1	,022.3	65,733	513,733	70,405			
568.0	06	69,129 1	,037.7	67,990	581,723	73,132			
569.0	0 7	71,429 1	,053.2	70,276	651,999	75,915			
Device	Routing	Invert	Outle	et Devices					
#1	Primary	558.00	48.0	" Round Culvert					
	,		L= 6	63.9' CMP. projectir	ng, no headwall, k	(e= 0.900			
			Inlet	/ Outlet Invert= 558.0	00'/551.36' S= 0).0100 '/' Cc= 0.900			
			n= 0	.013. Flow Area= 12	2.57 sf				
#2	Device 1	558.00	8.0"	Vert. Orifice/Grate	C= 0.600				
#3	Device 1	562.50	12.0	" Vert. Orifice/Grate	C= 0.600				
#4	Device 1	566.00	60.0	" x 60.0" Horiz. Orifi	ce/Grate C= 0.6	00			
			Limit	ted to weir flow at low	v heads				
#5	Secondarv	567.00	45.0	dea x 100.0' lona x	1.00' rise Sharp-C	rested Vee/Trap Weir			
	,		Cv=	2.56 (C= 3.20)	•	•			
Drimone		w_2 00 of o	@ 10 (18 bre UW_561 70'		namic Tailwater			
1=Cul	vert (Passe	s 3.08 cfs c	of 62.80	cfs potential flow)	100-330.13 (Dyi	namic Tallwalci)			
1 -2=0	-2=Orifice/Grate (Orifice Controls 3.08 cfs @ 8.84 fps)								

- —3=Orifice/Grate (Controls 0.00 cfs)
- **4=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=558.00' TW=0.00' (Dynamic Tailwater) 5=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Summary for Pond 13P: Det. Pond - 2

Inflow Area	a =	1.259 ac, 7	'1.41% Impe	ervious,	Inflow Depth =	3.85"	for 10-Y	'ear event
Inflow	=	4.30 cfs @	12.12 hrs,	Volume	= 0.404	af		
Outflow	=	0.78 cfs @	12.72 hrs,	Volume	= 0.399	af, At	ten= 82%,	Lag= 35.9 min
Primary	=	0.78 cfs @	12.72 hrs,	Volume	= 0.399	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Prepared by HDR Inc HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Peak Elev= 539.56' @ 12.72 hrs Surf.Area= 6,928 sf Storage= 9,328 cf Flood Elev= 541.00' Surf.Area= 8,791 sf Storage= 20,626 cf

Plug-Flow detention time= 390.7 min calculated for 0.399 af (99% of inflow) Center-of-Mass det. time= 381.7 min (1,181.1 - 799.4)

Volume	Inve	ert Avail	.Storage	Storage Description	on		
#1	538.0)0' 2	20,626 cf	Custom Stage Da	a ta (Irregular) List	ted below (Recalc)	
Elevatio	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
538.0 539.0 540.0 541.0	00 00 00 00	5,054 6,243 7,489 8,791	387.0 405.8 424.7 423.9	0 5,638 6,857 8,131	0 5,638 12,495 20,626	5,054 6,305 7,621 8,049	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	538	.00' 15.0 ' L= 9 Inlet n= 0	' Round Culvert 4.0' CMP, square / Outlet Invert= 53 .013, Flow Area=	edge headwall, H 8.00' / 537.00' S 1.23 sf	≪e= 0.500 = 0.0106 '/' Cc= 0.9	900
#2 #3 #4	Device 1 Device 1 Device 1	538 538 539	.00' 2.4'' .90' 4.0'' .50' 24.0' Limit	Vert. Orifice/Grate Vert. Orifice/Grate "Horiz. Orifice/Grate ed to weir flow at le	e C= 0.600 e C= 0.600 ate C= 0.600 ow heads		

Primary OutFlow Max=0.78 cfs @ 12.72 hrs HW=539.56' TW=533.74' (Dynamic Tailwater)

-1=Culvert (Passes 0.78 cfs of 5.72 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.18 cfs @ 5.82 fps)

-3=Orifice/Grate (Orifice Controls 0.30 cfs @ 3.38 fps)

-4=Orifice/Grate (Weir Controls 0.31 cfs @ 0.81 fps)

Summary for Pond 15P: Culvert at Entr.

Inflow Area	ι =	4.001 ac,	15.42% Impe	ervious,	Inflow Depth =	2.82"	for 10-	Year event
Inflow	=	8.29 cfs @	12.24 hrs,	Volume	= 0.942	2 af		
Outflow	=	8.29 cfs @	12.24 hrs,	Volume	= 0.942	af, At	ten= 0%,	Lag= 0.0 min
Primary	=	8.29 cfs @	12.24 hrs,	Volume	= 0.942	2 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 530.16' @ 12.24 hrs Surf.Area= 306 sf Storage= 333 cf

Plug-Flow detention time= 0.6 min calculated for 0.942 af (100% of inflow) Center-of-Mass det. time= 0.5 min (830.9 - 830.5)

Volume	Invert	Avail.Storage	Storage Description
#1	527.17'	1,407 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Pt E-Prop Dn Stream Prenared by HDB Inc

Type III 24-hr 10-Year Rainfall=4.90" Printed 9/14/2017

Frepared by FDF Inc	
HydroCAD® 10.00-19 s/n 05756	© 2016 HydroCAD Software Solutions LLC

Page 18

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
527.17	6	14.0	0	0	6
528.00	44	35.0	18	18	90
529.00	121	58.1	79	98	268
530.00	266	92.9	189	286	693
531.00	555	117.6	402	688	1,120
532.00	897	157.4	719	1,407	2,001
Device Routing	Inv	ert Outlet I	Devices		

00000	riouting	Involt	Callot Dolloco
#1	Primary	527.17'	18.0" Round Culvert X 2.00
			L= 52.8' RCP, groove end w/headwall, Ke= 0.200
			Inlet / Outlet Invert= 527.17' / 526.65' S= 0.0098 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.77 sf
#2	Device 1	527.17'	18.0" W x 3.0" H Vert. Orifice/Grate C= 0.600
#3	Device 1	530.00'	72.0" x 72.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=8.29 cfs @ 12.24 hrs HW=530.16' TW=526.94' (Dynamic Tailwater) -1=Culvert (Passes 8.29 cfs of 27.35 cfs potential flow) -2=Orifice/Grate (Orifice Controls 3.06 cfs @ 8.16 fps)

-3=Orifice/Grate (Weir Controls 5.23 cfs @ 1.33 fps)

Summary for Pond 17P: Box Culvert for stream

Inflow Area	a =	57.525 ac,	3.12% Impervious,	Inflow Depth =	2.57" for 1	0-Year event
Inflow	=	74.83 cfs @	12.62 hrs, Volume	= 12.306	af	
Outflow	=	74.75 cfs @	12.65 hrs, Volume	= 12.306	af, Atten= 0%	%, Lag= 1.8 min
Primary	=	74.75 cfs @	12.65 hrs, Volume	= 12.306	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 533.76' @ 12.65 hrs Surf.Area= 3,542 sf Storage= 1,300 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.1 min (878.2 - 878.1)

Volume	Inv	ert Avai	I.Storage	Storage Descripti	on		
#1	533.	00' :	25,714 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recalc)	
Elevatic (fee	on it)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
533.0	0	412	159.8	0	0	412	
534.0	0	5,210	513.7	2,362	2,362	19,382	
535.0	0	11,714	795.5	8,245	10,608	48,748	
536.0	00	18,774	996.6	15,106	25,714	77,441	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	532	.20' 144. L= 5 Inlet n= 0	0" W x 60.0" H Bo 1.5' CMP, square / Outlet Invert= 53 .024, Flow Area=	5x Culvert e edge headwall, 2.20' / 530.66' S 60.00 sf	Ke= 0.500 = 0.0299 '/' Cc= 0).900

Primary OutFlow Max=74.75 cfs @ 12.65 hrs HW=533.76' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 74.75 cfs @ 4.00 fps)

Summary for Pond 18P: Level Spreader

Inflow Area	l =	19.937 ac, 9	92.58% Impe	ervious,	Inflow Depth >	> 4.16	6" for 10-`	Year event
Inflow	=	3.08 cfs @	18.08 hrs,	Volume=	= 6.91	6 af		
Outflow	=	3.08 cfs @	18.09 hrs,	Volume=	= 6.91	5 af, 🏼	Atten= 0%,	Lag= 0.6 min
Primary	=	3.08 cfs @	18.09 hrs,	Volume=	= 6.91	5 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 558.00' Surf.Area= 2,625 sf Storage= 7,350 cf Peak Elev= 558.15' @ 18.09 hrs Surf.Area= 2,625 sf Storage= 7,505 cf (155 cf above start)

Plug-Flow detention time= 55.4 min calculated for 6.745 af (98% of inflow) Center-of-Mass det. time= 0.7 min (1,577.8 - 1,577.1)

Volume	Inve	ert Avai	I.Storage	Storage [Description	
#1	551.0	00'	8,400 cf	Custom 9 21,000 cf	Stage Data (Prismat Overall x 40.0% Vo	t ic) Listed below (Recalc) bids
Elevatic (fee	on et)	Surf.Area (sq-ft)	Inc (cubi	:.Store c-feet)	Cum.Store (cubic-feet)	
551.0	0	2,625		0	0	
556.0	00	2,625	-	13,125	13,125	
557.0	0	2,625		2,625	15,750	
558.0	0	2,625		2,625	18,375	
559.0	00	2,625		2,625	21,000	
Device	Routing	In	vert Outl	et Devices		
#1	Primary	558	.00' 75.0 Limi	" x 35.0" H ted to weir	foriz. Orifice/Grate flow at low heads	C= 0.600

Primary OutFlow Max=3.08 cfs @ 18.09 hrs HW=558.15' TW=558.06' (Dynamic Tailwater) -1=Orifice/Grate (Weir Controls 3.08 cfs @ 1.14 fps)

Summary for Pond 23P:

Inflow Area =	=	0.805 ac, 7	73.17% Impe	ervious,	Inflow E	Depth =	3.96	6" for 10-	Year event
Inflow =	:	3.52 cfs @	12.07 hrs,	Volume	=	0.265	af		
Outflow =	:	3.47 cfs @	12.08 hrs,	Volume	=	0.265	af, A	Atten= 1%,	Lag= 0.8 min
Primary =	:	0.23 cfs @	13.96 hrs,	Volume	=	0.156	af		
Secondary =	:	3.32 cfs @	12.08 hrs,	Volume	=	0.109	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 531.86' @ 12.08 hrs Surf.Area= 908 sf Storage= 645 cf

Plug-Flow detention time= 8.4 min calculated for 0.265 af (100% of inflow) Center-of-Mass det. time= 8.3 min (799.5 - 791.2)

Prepared by HDR Inc

Type III 24-hr 10-Year Rainfall=4.90" Printed 9/14/2017 HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC Page 20

Volume	Inver	t Avail.S	Storage	Storage D	escription		
#1	527.33	•	793 cf	Custom S	Stage Data (Irregu	lar) Listed below (R	ecalc)
Elevatio	n S	Surf.Area	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
(fee	t)	(sq-ft)	(feet)	(%)	(cubic-feet)	(cubic-feet)	(sq-ft)
527.3	3	4	8.0	0.0	0	0	4
527.3	4	4	8.0	35.0	0	0	4
530.1	6	4	8.0	35.0	4	4	27
530.1	9	56	110.4	100.0	1	5	991
531.0	0	317	180.9	100.0	137	141	2,630
532.0	1	1,044	364.9	100.0	652	793	10,626
Device	Routing	Inve	ert Outle	et Devices			
#1	Primary	527.3	3' 2.5''	Round Cu	ulvert		
			L= 1	6.0' CPP,	square edge head	dwall, Ke= 0.500	
			Inlet	/ Outlet In	vert= 527.33' / 527	'.17' S= 0.0100 '/'	Cc= 0.900
			n= 0	.013, Flow	/ Area= 0.03 sf		
#2	Secondary	/ 531.6	0' 30.0 Cv=	deg x 7.7' 2.61 (C= 3	long x 0.40' rise \$.26)	Sharp-Crested Vee/	Trap Weir

Primary OutFlow Max=0.23 cfs @ 13.96 hrs HW=531.58' TW=527.56' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.23 cfs @ 6.82 fps)

Secondary OutFlow Max=3.31 cfs @ 12.08 hrs HW=531.86' TW=530.14' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Weir Controls 3.31 cfs @ 1.65 fps)

Summary for Pond 24P: Flow Splitter

Inflow Area	=	16.505 ac,10	0.00% Imper	rvious, Inflow [Depth = 4.6	6" for 10-	Year event
Inflow	=	75.45 cfs @	12.10 hrs, \	/olume=	6.414 af		
Outflow	=	75.45 cfs @	12.10 hrs, \	/olume=	6.414 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	26.66 cfs @	12.10 hrs, \	/olume=	5.229 af		
Secondary	=	48.79 cfs @	12.10 hrs, \	/olume=	1.185 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 568.34' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	562.96'	24.0'' Round Culvert L= 44.7' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 562.96' / 562.00' S= 0.0215 '/' Cc= 0.900 n= 0.013, Flow Area= 3.14 sf
#2	Secondary	562.96'	48.0'' Round Culvert L= 106.2' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 562.96' / 562.43' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 12.57 sf
#3	Device 2	565.70'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=26.65 cfs @ 12.10 hrs HW=568.34' TW=565.24' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 26.65 cfs @ 8.48 fps)

Secondary OutFlow Max=48.75 cfs @ 12.10 hrs HW=568.34' TW=559.57' (Dynamic Tailwater) 2=Culvert (Passes 48.75 cfs of 97.98 cfs potential flow) 3=Sharp-Crested Rectangular Weir (Weir Controls 48.75 cfs @ 5.31 fps)

Summary for Pond 28P: Ramp Culvert

Inflow Area	ι =	0.918 ac,	72.44% Impe	ervious,	Inflow Depth	= 3.8	9" for 10-	Year event
Inflow	=	3.47 cfs @	12.13 hrs,	Volume	= 0.29	97 af		
Outflow	=	3.46 cfs @	12.14 hrs,	Volume	= 0.29	97 af,	Atten= 0%,	Lag= 0.4 min
Primary	=	3.46 cfs @	12.14 hrs,	Volume	= 0.29	97 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 555.69' @ 12.14 hrs Surf.Area= 224 sf Storage= 99 cf Flood Elev= 557.00' Surf.Area= 534 sf Storage= 342 cf

Plug-Flow detention time= 1.7 min calculated for 0.297 af (100% of inflow) Center-of-Mass det. time= 1.2 min (799.5 - 798.3)

Volume	Inv	ert Avai	.Storage	Storage Descripti	on		
#1	554.	61'	342 cf	Custom Stage Da	ata (Irregular) Liste	ed below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
554.6 555.0 556.0 556.3	61 00 00 36	4 56 337 534	8.0 45.8 150.1 184.0	0 10 177 155	0 10 187 342	4 166 1,795 2,698	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	555	.00' 23.0 L= 3 Inlet n= 0	"W x 14.0"H, R=2 0.0'RCP, groove /Outlet Invert= 55 .013, Flow Area=	22.0'' Elliptical RC end projecting, K 5.00' / 553.62' S= 1.83 sf	P_Elliptical 23x14 e= 0.200 = 0.0460 '/' Cc= 0.90	00

Primary OutFlow Max=3.46 cfs @ 12.14 hrs HW=555.69' TW=554.07' (Dynamic Tailwater) -1=RCP_Elliptical 23x14 (Inlet Controls 3.46 cfs @ 3.11 fps)

Summary for Pond 29P: Gravel Inlet Trench

Inflow Area	ι =	1.259 ac, 7	1.41% Impe	ervious,	Inflow Dep	oth = 3	.85" for	10-\	lear event	
Inflow	=	4.30 cfs @	12.12 hrs,	Volume	= 0).404 af				
Outflow	=	4.30 cfs @	12.12 hrs,	Volume	= 0).404 af	, Atten=	0%,	Lag= 0.0 n	nin
Primary	=	4.30 cfs @	12.12 hrs,	Volume	= 0).404 af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Peak Elev= 539.59' @ 12.18 hrs Surf.Area= 4 sf Storage= 2 cf

Plug-Flow detention time= 0.1 min calculated for 0.404 af (100% of inflow) Center-of-Mass det. time= 0.1 min (799.4 - 799.3)

Volume	Invert	Avail.Stor	age	Storage Description
#1	538.25'	1	4 cf	2.00'W x 2.00'L x 9.75'H Prismatoid 39 cf Overall x 35.0% Voids
Device	Routing	Invert	Outle	et Devices
#1	Primary	538.25'	15.0 L= 2 Inlet n= 0	" Round Culvert 5.0' RCP, square edge headwall, Ke= 0.500 / Outlet Invert= 538.25' / 538.00' S= 0.0100 '/' Cc= 0.900 .013, Flow Area= 1.23 sf

Primary OutFlow Max=4.20 cfs @ 12.12 hrs HW=539.53' TW=539.01' (Dynamic Tailwater) ↓ 1=Culvert (Outlet Controls 4.20 cfs @ 4.15 fps)

Summary for Pond 30P: Culvert 2

Inflow Area	=	1.380 ac,	0.00% Impervious,	Inflow Depth = 2	2.54" for 10-	Year event
Inflow	=	2.95 cfs @	12.24 hrs, Volume	= 0.292 a	ıf	
Outflow	=	2.95 cfs @	12.24 hrs, Volume	= 0.292 a	If, Atten= 0%,	Lag= 0.0 min
Primary	=	2.95 cfs @	12.24 hrs, Volume	= 0.292 a	ıf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 534.46' @ 12.24 hrs Flood Elev= 534.87'

#1 Primary 533.66' 23.0'' W x 14.0'' H, R=22.0'' Elliptical RCP_Elliptical 23x14 L= 24.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 533.66' / 533.54' S= 0.0050 '/' Cc= 0.9 n= 0.013, Flow Area= 1.83 sf	00

Primary OutFlow Max=2.95 cfs @ 12.24 hrs HW=534.46' TW=533.97' (Dynamic Tailwater) **1=RCP_Elliptical 23x14** (Barrel Controls 2.95 cfs @ 3.11 fps)

Summary for Pond 31P: Culvert 3

Inflow Area	a =	0.544 ac,	73.53% Impe	ervious,	Inflow Depth	= 3.9	99" for 10	-Year event
Inflow	=	2.41 cfs @	12.07 hrs,	Volume	= 0.18	31 af		
Outflow	=	2.41 cfs @	12.07 hrs,	Volume	= 0.18	31 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	2.41 cfs @	12.07 hrs,	Volume	= 0.18	31 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 533.68' @ 12.07 hrs Flood Elev= 538.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	533.00'	23.0" W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14

L= 24.0' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 533.00' / 532.35' S= 0.0271 '/' Cc= 0.900 n= 0.013, Flow Area= 1.83 sf

Primary OutFlow Max=2.40 cfs @ 12.07 hrs HW=533.68' TW=532.82' (Dynamic Tailwater) **1=RCP_Elliptical 23x14** (Inlet Controls 2.40 cfs @ 2.18 fps)

Summary for Link 21L: Point A

Inflow A	Area =	27.710 ac, 6	6.61% Impervious,	Inflow Depth > 3.	71" for 10-Year event
Inflow	=	17.72 cfs @	12.29 hrs, Volume	= 8.558 af	
Primary	/ =	17.72 cfs @	12.29 hrs, Volume	= 8.558 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 22L: Point B

Inflow A	Area =	57.525 ac,	3.12% Impervious,	Inflow Depth = 2.5	57" for 10-Year event
Inflow	=	74.75 cfs @	12.65 hrs, Volume=	= 12.306 af	
Primary	/ =	74.75 cfs @	12.65 hrs, Volume=	= 12.306 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 28L: Point F

Inflow /	Area	=	5.040 ac,	0.00% Impervio	us, Inflow De	epth = 2.5	64" for 10-	Year event
Inflow		=	7.01 cfs @	12.61 hrs, Volu	ume=	1.067 af		
Primary	у	=	7.01 cfs @	12.61 hrs, Volu	lme=	1.067 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 29L: Point E

Inflow /	Area =	468.979 ac,	4.45% Impervious, Inf	low Depth > 2.61	for 10-Year event
Inflow	=	119.16 cfs @	17.72 hrs, Volume=	102.170 af	
Primar	у =	119.16 cfs @	17.72 hrs, Volume=	102.170 af, A	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Subcatchment 1S: Main Site

Runoff = 134.52 cfs @ 12.10 hrs, Volume= 11.636 af, Depth= 8.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area	Area (ac) CN Description									
16.	505 9	8 Pave	ed parking	, HSG D						
16.	505	100.	00% Impe	rvious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
2.3	158	0.0100	1.16		Sheet Flow,					
0.5	135	0.0025	4.18	20.51	Smooth surfaces n= 0.011 P2= 3.30" Pipe Channel, 130-131 30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'					
0.4	110	0.0025	4.72	33.35	n= 0.013 Pipe Channel, 131-132 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'					
0.3	79	0.0025	4.72	33.35	n= 0.013 Pipe Channel, 132-133 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'					
0.8	246	0.0025	5.23	50.30	n= 0.013 Pipe Channel, 133-134 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'					
0.4	133	0.0025	5.23	50.30	n= 0.013 Pipe Channel, 134-135 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.012					
0.6	182	0.0025	5.23	50.30	Pipe Channel, 135-136 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88' n= 0.013					
0.7	256	0.0025	5.72	71.82	Pipe Channel, 136-137 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'					
0.7	233	0.0025	5.72	71.82	Pipe Channel, 137-138 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'					
0.4	130	0.0025	5.72	71.82	Pipe Channel, 138-139 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'					
0.3	113	0.0025	5.72	71.82	Pipe Channel, 139-Outlet 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.013					

7.4 1,775 Total

Summary for Subcatchment 9S: DA to Point E

Runoff = 259.51 cfs @ 17.71 hrs, Volume= 184.858 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Α	rea (sf)	CN E	Description		
16,322,075 77 Woods, Good, HSG D				od, HSG D	
16,322,075		1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.1	80	0.0480	0.26		Sheet Flow,
					Range n= 0.130 P2= 3.30"
391.3	7,875	0.0180	0.34		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
34.5	3,919	0.0130	1.90	182.01	Channel Flow,
					Area= 96.0 sf Perim= 81.1' r= 1.18'
					n= 0.100 Very weedy reaches w/pools

430.9 11,874 Total

Summary for Subcatchment 10S: Forebay Area

Runoff = 2.81 cfs @ 12.07 hrs, Volume= 0.200 af, Depth= 6.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

	Area (a	ac)	CN	Desc	ription				
	0.2	68	80	>75%	6 Grass co	over, Good	HSG D		
	0.0	86	98	Wate	er Surface	, HSG D			
	0.3	54	84	Weig	hted Aver	age			
	0.2	0.268 75.71% Pervious Area							
	0.0	86		24.29	9% Imperv	vious Area			
	Tc	Length	1 8	Slope	Velocity	Capacity	Description		
(min)	(feet))	(ft/ft)	(ft/sec)	(cfs)			
	5.0						Direct Entry,		

Summary for Subcatchment 11S: Gravel WVTS Area

Runoff = 9.47 cfs @ 12.07 hrs, Volume= 0.694 af, Depth= 7.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70" Pt E-Prop_Dn_Stream

 Type III 24-hr
 100-Year Rainfall=8.70"

 Printed
 9/14/2017

 ns LLC
 Page 26

Prepared by HDR Inc		
HydroCAD® 10.00-19 s/n	05756 © 2016 HydroCAD	Software Solutions LLC

Area	(ac)	CN	Desc	cription		
0.	.605	98	Wate	er Surface	, HSG D	
0.	296	80	>75%	% Grass co	over, Good	, HSG D
0.	.228	77	Woo	ds, Good,	HSG D	
1.	129	89	Weig	ghted Aver	rage	
0.	524		46.4	1% Pervio	us Area	
0.	605		53.5	9% Imperv	vious Area	
Tc	Leng	th	Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
5.0						Direct Entry,
						-
				_		

Summary for Subcatchment 12S: Subcat for Swale - 1

Runoff = 7.56 cfs @ 12.08 hrs, Volume= 0.583 af, Depth= 7.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

	Area	(ac)	CN	Desc	cription		
	0.	253	74	>75%	6 Grass co	over, Good,	, HSG C
*	0.	665	98	Pave	ed parking	, HSG C	
	0.	918	91	Weig	ghted Aver	age	
	0.	253		27.5	6% Pervio	us Area	
	0.	665		72.44	4% Imperv	vious Area	
	Tc (min)	Lengt (fee	h t)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0	99	30	.1266	2.77		Lag/CN Method,

Summary for Subcatchment 13S: Pond

Runoff = 16.77 cfs @ 12.07 hrs, Volume= 1.257 af, Depth= 7.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area ((ac)	CN	Desc	cription			
1.:	261	98	Wate	er Surface	, HSG C		
0.	624	80	>75%	6 Grass co	over, Good	, HSG D	
0.	064	77	Woo	ds, Good,	HSG D		
1.9	949	92	Weig	phted Aver	age		
0.	688		35.30	0% Pervio	us Area		
1.:	261		64.70	0% Imperv	vious Area		
Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.0						Direct Entry,	

Summary for Subcatchment 16S: DA to Entr. Culvert

Runoff = 15.19 cfs @ 12.25 hrs, Volume= 1.577 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

 Area	(ac)	CN	Desc	ription		
3.	168	77	Woo	ds, Good,	HSG D	
 0.	028	98	Pave	ed parking,	HSG D	
 3.	196	77	Weig	phted Aver	age	
3.	168		99.12	2% Pervio	us Area	
0.	028		0.88	% Impervio	ous Area	
 Tc (min)	Lengt (fee	h S t)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
18.9	1,03	4 0.	0359	0.91		Lag/CN Method,

Summary for Subcatchment 18S: Subcat to Point B

Runoff = 164.85 cfs @ 12.62 hrs, Volume= 26.198 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area	(ac) (CN	Desc	cription		
52.	205	77	Woo	ds, Good,	HSG D	
0.	898	98	Pave	ed parking,	HSG D	
53.	103	77	Weig	ghted Aver	age	
52.	205		98.3	1% Pervio	us Area	
0.	898		1.69	% Impervio	ous Area	
То	Longth		lono	Valaaity	Consoity	Description
(min)	(foot)	3	/f+/f+)		Capacity (ofc)	Description
(11111)	(ieel)		(10,11)	(11/580)	(015)	
47.5	3,073	0.0	0324	1.08		Lag/CN Method,

Summary for Subcatchment 19S: Subcat for Swale - 2

Runoff = 5.16 cfs @ 12.03 hrs, Volume= 0.351 af, Depth= 7.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

	Area (ac)	CN	Description
	0.400	98	Water Surface, HSG C
*	0.144	74	>75% Grass cover, Good, HSG C
	0.544	92	Weighted Average
	0.144		26.47% Pervious Area
	0.400		73.53% Impervious Area

Pt E-Pro	p_Dn_	Stream			Type III 24-hr 100-Year Rainfall=8.70"			
Prepared	d by HD	R Inc					Printed 9/14/2	2017
HydroCAL	D® 10.00	-19 s/n 05	5756 © 20	16 HydroCA	D Software So	olutions LLC	Pag	<u>je 28</u>
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
2.3	313	0.1239	2.27		Lag/CN Me	thod,		
					-			
			Summa	ry for Sub	ocatchmen	t 20S: Wetlands		
Runoff	=	35.64 cfs	s@ 12.2	8 hrs, Volu	ime=	3.835 af, Depth= 5.9	2"	
Runoff by Type III 2	/ SCS TF 4-hr 100	R-20 meth)-Year Ra	nod, UH=S ainfall=8.7(SCS, Weigh D"	nted-CN, Time	e Span= 0.00-48.00 hr	s, dt= 0.01 hrs	
Area (ac) C	N Desc	cription					
7.7	773 7	'7 Woo	ds, Good,	HSG D				
7.7	773	100.	00% Pervi	ous Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
20.6	1,002	0.0286	0.81		Lag/CN Me	thod,		
			Summa	ary for Su	ıbcatchmei	nt 23S: Point D		
Runoff	= 3	319.56 cfs	s@ 12.4	2 hrs, Volu	ime= 4	41.217 af, Depth= 5.9	2"	
Runoff by Type III 2	/ SCS TF 4-hr 100	R-20 meth)-Year Ra	nod, UH=S ainfall=8.70	CS, Weigh)"	nted-CN, Time	e Span= 0.00-48.00 hr	s, dt= 0.01 hrs	
Ar	ea (sf)	CN D	escription					
3,63	39,264	77 V	/oods, Go	od, HSG D				
3,63	39,264	1	00.00% Pe	ervious Are	а			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
31.3	3,135	0.0772	1.67		Lag/CN Me	thod,		
		:	Summar	y for Sub	catchment	24S: DA for 25R		
Runoff	=	3.27 cfs	s@ 12.5	1 hrs, Volu	ime=	0.452 af, Depth= 5.9	2"	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area (ac)	CN	Description
0.916	77	Woods, Good, HSG D
0.916		100.00% Pervious Area

Pt E-Pr	op_Dn_	Stream				Type III 24-h	r 100-Year Rain	nfall=8.70"		
Prepare	d by HD	R Inc			Printed					
<u>HydroCA</u>	D® 10.00-	-19 s/n 05	5756 © 20	16 HydroCA	D Software So	olutions LLC		Page 29		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
36.2	1,580	0.0192	0.73		Lag/CN Me	thod,				
		•								
		SL	Immary	for Subca	atchment 2	55: Rerouted A	rea			
Runoff	=	6.87 cfs	s@ 12.2	3 hrs, Volu	ime=	0.681 af, Depth=	5.92"			
Runoff b	y SCS TF	R-20 meth	nod, UH=S	SCS, Weigh	nted-CN, Time	e Span= 0.00-48.0	0 hrs, dt= 0.01 hrs	6		
Type III 2	24-hr 100)-Year Ra	ainfall=8.7	0"						
Area	(ac) C	N Deso	cription							
1.	.380 7	7 Woo	ds, Good,	HSG D						
1.	.380	100.	00% Pervi	ous Area						
Тс	Lenath	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption					
16.9	734	0.0260	0.73		Lag/CN Me	thod,				
		Sum	mary for	Subcatch	nment 26S:	: Subcat for Swa	ale - 2			
Runoff	=	3.18 cfs	s@ 12.0	3 hrs, Volu	ime=	0.213 af, Depth=	7.50"			
Runoff b	V SCS TF	R-20 meth	nod, UH=S	SCS, Weigh	nted-CN, Time	e Span= 0.00-48.0	0 hrs, dt= 0.01 hr։	5		
Type III 2	24-hr 100)-Year Ra	ainfall=8.7	0"	,	•	,			
Area	(ac) C	N Deso	cription							
* 0.	.234 9	8 Pave	ed parking	, HSG D						
0.	.107 7	′4 >75°	<u>% Ġrass č</u>	over, Good	, HSG C					
0.	.341 9	0 Weig	ghted Ave	rage						
0.	.107	31.3	8% Pervio	us Area						
0.	.234	00.0		nous Alea						
Tc	Length	Slope	Velocity	Capacity	Description					
2.3		0.1266	2.08	(CIS)	Lag/CN Me	thod.				
		-				, 				
		Sı	ummary	tor Subca	atchment 2	75: DA for Poin	it F			

Runoff = 16.28 cfs @ 12.57 hrs, Volume= 2.486 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.70"

Area (ac)	CN	Description
5.040	77	Woods, Good, HSG D
5.040		100.00% Pervious Area

Pt E-Pr	op_Dn_	Stream			Type III 24-hr 100-Year Rainfall=8.70'
Prepare	ed by HD	R Inc			Printed 9/14/2017
HydroCA	D® 10.00	-19 s/n 05	5756 © 20	16 HydroCA	AD Software Solutions LLC Page 30
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
44.0	2,185	0.0219	0.83	· · · ·	Lag/CN Method,
		Sur	nmary fo	or Subcat	tchment 29S: Rerouted Area B
Runoff	=	4.60 cfs	s@ 12.1	9 hrs, Volu	ume= 0.428 af, Depth= 5.92"
Runoff b Type III	oy SCS TF 24-hr 100	R-20 meth)-Year Ra	nod, UH=S ainfall=8.70	SCS, Weigh)"	hted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
A	rea (sf)	CN D	escription		
	37,749	77 W	/oods, Go	od, HSG D	
	37,749	1	00.00% Pe	ervious Are	ea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.3	599	0.0260	0.70		Lag/CN Method,
		Sumr	mary for	Subcatcl	hment 34S: Subcat for Swale - 4
Runoff	=	2.47 cfs	s@ 12.0	3 hrs, Volu	ume= 0.166 af, Depth= 7.62"
Runoff b Type III	oy SCS TF 24-hr 100	R-20 meth)-Year Ra	nod, UH=S ainfall=8.70	SCS, Weigh)"	hted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
Area	(ac) C	N Desc	cription		
* 0	.072 7	′4 >75%	6 Grass c	over, Good	d, HSG C
<u>* 0</u>	.189 9	8 Pave	ed parking	, HSG C	
0	.261 9	1 Weig	phted Ave	rage	
0	.072	27.5	9% Pervio	us Area	
0	.109	12.4	i /o iniperv	nous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cf <u>s)</u>	Description
2.2	292	0.1265	2.17		Lag/CN Method,

Summary for Reach 8R: Level Spreader

Inflow Area	a =	19.937 ac, 9	92.58% Impe	ervious,	Inflow Depth >	> 7.3	33" for 100)-Year event
Inflow	=	7.62 cfs @	14.64 hrs,	Volume	= 12.17	8 af		
Outflow	=	7.62 cfs @	14.65 hrs,	Volume	= 12.17	4 af,	Atten= 0%,	Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.02 fps, Min. Travel Time= 0.8 min Avg. Velocity = 0.69 fps, Avg. Travel Time= 1.2 min

Peak Storage= 360 cf @ 14.65 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.00' Flow Area= 105.0 sf, Capacity= 439.80 cfs 75.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 30.0 '/' Top Width= 135.00' Length= 48.0' Slope= 0.0100 '/' Inlet Invert= 558.00', Outlet Invert= 557.52' ‡ Summary for Reach 15R: Dry Swale - 1 Inflow Area = 0.918 ac, 72.44% Impervious, Inflow Depth = 7.62" for 100-Year event Inflow 7.56 cfs @ 12.08 hrs, Volume= 0.583 af = 6.75 cfs @ 12.12 hrs, Volume= Outflow 0.583 af, Atten= 11%, Lag= 2.4 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.69 fps, Min. Travel Time= 4.1 min Avg. Velocity = 1.06 fps, Avg. Travel Time= 14.2 min Peak Storage= 1,651 cf @ 12.12 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 87.10 cfs 2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 904.0' Slope= 0.0190 '/' Inlet Invert= 572.17', Outlet Invert= 555.00'

Summary for Reach 18R: Dry Swale - 3

Inflow Area	a =	0.544 ac, 7	'3.53% Impe	ervious,	Inflow Depth =	7.	74" for	100-	Year ev	rent
Inflow	=	5.16 cfs @	12.03 hrs,	Volume	= 0.35	1 af				
Outflow	=	4.65 cfs @	12.06 hrs,	Volume	= 0.35	1 af,	Atten=	10%,	Lag= 1	.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.99 fps, Min. Travel Time= 3.1 min Avg. Velocity = 0.69 fps, Avg. Travel Time= 13.2 min

Pt E-Prop Dn Stream	Type III 24-hr	100-Year Rainfall=8.70"
Prepared by HDR Inc		Printed 9/14/2017
HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solut	tions LLC	Page 32

Peak Storage= 857 cf @ 12.06 hrs Average Depth at Peak Storage= 0.24' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 54.76 cfs

6.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 550.0' Slope= 0.0273 '/' Inlet Invert= 548.05', Outlet Invert= 533.01'

Summary for Reach 20R: Dry Swale - 4

Inflow Area	a =	0.805 ac, 7	'3.17% Impe	ervious,	Inflow	Depth =	7.7	⁷ 0" for	· 100)-Year	event
Inflow	=	6.94 cfs @	12.05 hrs,	Volume	=	0.516	af				
Outflow	=	6.82 cfs @	12.06 hrs,	Volume	=	0.516	af,	Atten=	2%,	Lag=	0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.03 fps, Min. Travel Time= 1.1 min Avg. Velocity = 0.85 fps, Avg. Travel Time= 3.9 min

Peak Storage= 445 cf @ 12.06 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 66.01 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 198.0' Slope= 0.0109 '/' Inlet Invert= 532.35', Outlet Invert= 530.19'

Summary for Reach 21R: Point C

Inflow Area	a =	4.001 ac, 1	15.42% Impe	ervious,	Inflow [Depth =	6.2	8" for 100)-Year event	
Inflow	=	18.29 cfs @	12.24 hrs,	Volume	=	2.093	af			
Outflow	=	18.29 cfs @	12.24 hrs,	Volume	=	2.093	af,	Atten= 0%,	Lag= 0.2 mi	in

Pt E-Prop Dn Stream Type III 24-hr 100-Year Rainfall=8.70" Prepared by HDR Inc HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.00 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 1.2 min

Peak Storage= 354 cf @ 12.24 hrs Average Depth at Peak Storage= 0.46' Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 240.09 cfs

9.00' x 2.00' deep channel, n= 0.024 Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 77.4' Slope= 0.0136 '/' Inlet Invert= 526.65', Outlet Invert= 525.60'

‡

Printed 9/14/2017

Page 33

Summary for Reach 23R: Rerouting Ditch 1

0.00% Impervious, Inflow Depth = 5.92" Inflow Area = 1.380 ac. for 100-Year event 6.87 cfs @ 12.23 hrs, Volume= Inflow 0.681 af = 6.85 cfs @ 12.24 hrs, Volume= 0.681 af, Atten= 0%, Lag= 0.6 min Outflow =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.76 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.23 fps, Avg. Travel Time= 2.3 min

Peak Storage= 312 cf @ 12.24 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 20.18 cfs

2.00' x 1.00' deep channel, n= 0.025 Earth, clean & winding Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 171.0' Slope= 0.0137 '/' Inlet Invert= 536.00', Outlet Invert= 533.66'

Summary for Reach 25R: Ditch

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.31 fps, Min. Travel Time= 1.9 min Avg. Velocity = 0.83 fps, Avg. Travel Time= 5.3 min

Peak Storage= 369 cf @ 12.52 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 60.53 cfs

2.00' x 2.00' deep channel, n= 0.025 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 262.2' Slope= 0.0064 '/' Inlet Invert= 540.67', Outlet Invert= 539.00'

Summary for Reach 29R: Dry Swale - 2

Inflow A	rea =	1.259 ac,	71.41% Impervious	s, Inflow Depth =	7.58" for 10	0-Year event
Inflow	=	8.43 cfs @	12.10 hrs, Volun	ne= 0.795	af	
Outflow	' =	8.38 cfs @	12.12 hrs, Volun	ne= 0.795	af, Atten= 1%,	Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.02 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 3.8 min

Peak Storage= 569 cf @ 12.12 hrs Average Depth at Peak Storage= 0.64' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 90.04 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 273.0' Slope= 0.0203 '/' Inlet Invert= 553.62', Outlet Invert= 548.08'

Summary for Reach 30R: Rerouted Ditch below Culvert

 Inflow Area =
 2.247 ac, 0.00% Impervious, Inflow Depth = 5.92" for 100-Year event

 Inflow =
 11.33 cfs @
 12.22 hrs, Volume=
 1.108 af

 Outflow =
 11.31 cfs @
 12.23 hrs, Volume=
 1.108 af, Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.07 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.67 fps, Avg. Travel Time= 2.1 min

Peak Storage= 473 cf @ 12.23 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 25.17 cfs

2.00' x 1.00' deep channel, n = 0.013Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 212.0' Slope= 0.0058 '/' Inlet Invert= 533.54', Outlet Invert= 532.32'

Summary for Pond 2P: Forebay

Inflow Area =	=	16.859 ac, 9	8.41% Impervious,	Inflow Depth =	6.30"	for 100	-Year event
Inflow =	-	36.64 cfs @	12.10 hrs, Volume	€= 8.855	af		
Outflow =	-	36.51 cfs @	12.11 hrs, Volume	€= 8.850	af, Atte	en= 0%,	Lag= 0.6 min
Primary =	-	5.22 cfs @	10.36 hrs, Volume)= 5.271	af		
Secondary =	•	32.14 cfs @	12.11 hrs, Volume	€= 3.579	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 3,802 sf Storage= 3,789 cf Peak Elev= 565.30' @ 12.11 hrs Surf.Area= 5,835 sf Storage= 24,399 cf (20,611 cf above start) Flood Elev= 568.00' Surf.Area= 7,249 sf Storage= 42,057 cf (38,268 cf above start)

Plug-Flow detention time= 62.9 min calculated for 8.761 af (99% of inflow) Center-of-Mass det. time= 49.3 min (796.8 - 747.5)

Volume	Invert	Avail.Storage	Storage Description
#1	558.00'	49,579 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Type III 24-hr 100-Year Rainfall=8.70" Printed 9/14/2017

Prepared by HDR Inc	
HydroCAD® 10.00-19 s/n 05756	© 2016 HydroCAD Software Solutions LLC

Page 36

_		~				a a	
Elevatio	on	Surf.Area	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
(fee	et)	(sq-ft)	(feet)	(%)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>
558.0	00	2,536	269.1	0.0	0	0	2,536
559.0	00	2,944	279.8	40.0	1,095	1,095	3,078
560.0	00	3,366	290.5	40.0	1,261	2,356	3,641
561.0	00	3,802	301.2	40.0	1,433	3,789	4,225
562.0	00	4,252	312.0	100.0	4,025	7,814	4,835
563.0	00	4,716	322.7	100.0	4,482	12,296	5,462
564.0	00	5,194	333.4	100.0	4,953	17,249	6,110
565.0	00	5,687	344.1	100.0	5,439	22,687	6,779
566.0	00	6,193	354.8	100.0	5,938	28,626	7,469
567.0	00	6,714	365.5	100.0	6,452	35,077	8,180
568.0	00	7,249	376.2	100.0	6,980	42,057	8,912
569.0	00	7,798	386.9	100.0	7,522	49,579	9,666
Device	Routing	Inve	ert Outle	et Device	es		
#1	Primary	558.0	0' 12.0'	' Round	I Culvert		
	-		L= 20	0.0' CP	P, projecting, no he	adwall, Ke= 0.90	0
			Inlet	/ Outlet	Invert= 558.00' / 55	8.00' S= 0.0000	'/' Cc= 0.900
			n= 0.	.013, Flo	ow Area= 0.79 sf		
#2	Seconda	ry 565.0	0' 60.0'	long Sh	arp-Crested Recta	ngular Weir 2 E	nd Contraction(s)
	3.0' Crest Height						

Primary OutFlow Max=5.21 cfs @ 10.36 hrs HW=565.05' TW=562.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 5.21 cfs @ 6.64 fps)

Secondary OutFlow Max=32.11 cfs @ 12.11 hrs HW=565.30' TW=563.16' (Dynamic Tailwater) 2=Sharp-Crested Rectangular Weir (Weir Controls 32.11 cfs @ 1.80 fps)

Summary for Pond 3P: Gravel WVTS

Inflow Area =	17.988 ac, 9	5.60% Impervious,	Inflow Depth = 6.3	37" for 100-Year event
Inflow =	45.42 cfs @	12.09 hrs, Volume	= 9.544 af	
Outflow =	37.08 cfs @	12.14 hrs, Volume	= 9.514 af,	Atten= 18%, Lag= 2.8 min
Primary =	37.08 cfs @	12.14 hrs, Volume	= 9.514 af	_
Secondary =	0.00 cfs @	0.00 hrs, Volume	e 0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 561.00' Surf.Area= 22,959 sf Storage= 27,438 cf Peak Elev= 563.97' @ 14.47 hrs Surf.Area= 25,900 sf Storage= 100,017 cf (72,579 cf above start) Flood Elev= 568.00' Surf.Area= 30,084 sf Storage= 212,684 cf (185,246 cf above start)

Plug-Flow detention time= 263.0 min calculated for 8.884 af (93% of inflow) Center-of-Mass det. time= 169.2 min (964.4 - 795.2)

Volume	Invert	Avail.Storage	Storage Description
#1	558.00'	243,305 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Type III 24-hr 100-Year Rainfall=8.70" Printed 9/14/2017

Prepared by HDR Inc

HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Page 37

Elevatio	on	Surf.Area	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
(fee	et)	(sq-ft)	(feet)	(%)	(cubic-feet)	(cubic-feet)	(sq-ft)
558.0	00	22,771	626.2	0.0	0	0	22,771
559.0	00	22,834	626.9	40.0	9,121	9,121	23,401
560.0	00	22,897	627.7	40.0	9,146	18,267	24,034
561.0	00	22,959	628.5	40.0	9,171	27,438	24,667
562.0	00	23,935	639.2	100.0	23,445	50,884	25,919
563.0	00	24,924	649.9	100.0	24,428	75,312	27,192
564.0	00	25,928	660.6	100.0	25,424	100,736	28,486
565.0	00	26,947	671.3	100.0	26,436	127,172	29,801
566.0	00	27,978	682.1	100.0	27,461	154,633	31,146
567.0	00	29,024	692.8	100.0	28,499	183,132	32,504
568.0	00	30,084	703.5	100.0	29,552	212,684	33,883
569.0	00	31,161	714.3	100.0	30,621	243,305	35,293
_ .							
Device	Routing	Inve	rt Outle	et Devices	S		
#1	Primary	558.00	0' 36.0 '	" Round	Culvert		
			L= 2	0.0' CMI	P, square edge head	dwall, Ke= 0.500	.
			Inlet	/ Outlet Ir	nvert= 558.00' / 558	.00' S= 0.0000 '/'	Cc= 0.900
			n= 0	.013, Flo	w Area= 7.07 sf	-	
#2	Device 1	561.00	0' 12.0 '	" Vert. Or	ifice/Grate X 2.00	C= 0.600	
#3	Device 2	558.00	0' 12.0 '	" Vert. Or	ifice/Grate C= 0.6	500	
#4	Device 1	562.50	0' 60.0 '	" x 30.0"	Horiz. Orifice/Grate	• C= 0.600	
_			Limit	ed to wei	r flow at low heads		
#5	Device 2	562.50	0' 60.0 '	" x 30.0"	Horiz. Orifice/Grate	• C= 0.600	
			Limit	ed to wei	r flow at low heads		
#6	Seconda	ry 564.00	0' 100 .	0' long Sł	narp-Crested Recta	ingular Weir 2 Ei	nd Contraction(s)
			5.0' (Crest Hei	ght		
Dulus area		Max: 00 74	4- 0-40	d d lava 💷			
Trimary		VIax = 36.74	$\cos(\omega) 12$.14 nrs H	100=563.20 100=56	52.03 (Dynamic I	i aliwater)
	Invert (Pas		S UI JO./		a 5 20 fpa)		
				0.17 CIS (ertial flow		
			565 < 4.0		tential HOW)		

5=Orifice/Grate (Passes < 28.57 cfs potential flow)

-4=Orifice/Grate (Weir Controls 28.57 cfs @ 2.73 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=561.00' TW=558.00' (Dynamic Tailwater)

Summary for Pond 4P: DP-1

Inflow Area	a =	19.937 ac, 9	92.58% Impe	ervious,	Inflow	Depth >	8.28	3" for	100-	Year e	vent	
Inflow	=	151.64 cfs @	12.10 hrs,	Volume	=	13.750	af					
Outflow	=	7.62 cfs @	14.63 hrs,	Volume	=	12.180	af, A	Atten=	95%,	Lag=	151.8	min
Primary	=	7.62 cfs @	14.63 hrs,	Volume	=	12.180	af					
Secondary	=	0.00 cfs @	0.00 hrs,	Volume	=	0.000	af					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 563.93' @ 14.63 hrs Surf.Area= 60,062 sf Storage= 318,983 cf Flood Elev= 565.00' Surf.Area= 62,400 sf Storage= 384,495 cf

Plug-Flow detention time= 709.2 min calculated for 12.178 af (89% of inflow)

Prepared by HDR Inc

Type III 24-hr 100-Year Rainfall=8.70" Printed 9/14/2017 HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Page 38

Center-of-Mass det. time= 600.7 min (1,495.5 - 894.8)

Volume	Inver	t Avail.	Storage	Storage Description	on				
#1	558.00)' 65	1,999 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)			
Elevatio	n S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee	t)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
558.0	0	47,688	883.6	0	0	47,688			
559.0	0	49,705	899.0	48,693	48,693	50,047			
560.0	0	51,750	914.4	50,724	99,417	52,448			
561.0	0	53,824	929.8	52,784	152,201	54,888			
562.0	0	55,926	945.2	54,872	207,072	57,370			
563.0	0	58,056	960.6	56,988	264,060	59,893			
564.0	0	60,214	976.1	59,132	323,192	62,470			
565.0	0	62,400	991.5	61,304	384,495	65,075			
566.0	0	64,615	1,006.9	63,504	448,000	67,720			
567.0	0	66,858	1,022.3	65,733	513,733	70,405			
568.0	0	69,129	1,037.7	67,990	581,723	73,132			
569.0	0	71,429	1,053.2	70,276	651,999	75,915			
Device	Routing	Inv	ert Outle	et Devices					
#1	Primary	558.0	00' 48.0 '	" Round Culvert					
	-		L= 6	L= 663.9' CMP, projecting, no headwall, Ke= 0.900					
			Inlet	/ Outlet Invert= 55	8.00'/551.36'S	= 0.0100 '/' Cc= 0.900			
			n= 0	n= 0.013, Flow Area= 12.57 sf					
#2	Device 1	558.0	00' 8.0''	Vert. Orifice/Grate	e C= 0.600				
#3	Device 1	562.	50' 12.0 '	" Vert. Orifice/Grat	te C= 0.600				
#4	Device 1	566.0	00' 60.0 '	" x 60.0" Horiz. Or	ifice/Grate C= C	0.600			
			Limit	ted to weir flow at lo	ow heads				
#5	Secondar	y 567.0	00' 45.0	45.0 deg x 100.0' long x 1.00' rise Sharp-Crested Vee/T					
			UV=	2.50 (C= 3.20)					
Primary	Primary OutFlow Max=7.62 cfs @ 14.63 hrs HW=563.93' TW=558.27' (Dynamic Tailwater)								

-1=Culvert (Passes 7.62 cfs of 94.70 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 3.98 cfs @ 11.39 fps)

-3=Orifice/Grate (Orifice Controls 3.65 cfs @ 4.64 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=558.00' TW=0.00' (Dynamic Tailwater) 5=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Summary for Pond 13P: Det. Pond - 2

Inflow Area	ι =	1.259 ac, 7	'1.41% Impe	ervious,	Inflow Dep	pth = 7	.58" fo	r 100-	Year ever	nt
Inflow	=	8.38 cfs @	12.12 hrs,	Volume	= (0.795 af				
Outflow	=	6.50 cfs @	12.23 hrs,	Volume	= (0.789 af	, Atten=	22%,	Lag= 6.7	min
Primary	=	6.50 cfs @	12.23 hrs,	Volume	= (0.789 af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Prepared by HDR Inc HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Peak Elev= 539.94' @ 12.23 hrs Surf.Area= 7,405 sf Storage= 12,015 cf Flood Elev= 541.00' Surf.Area= 8,791 sf Storage= 20,626 cf

Plug-Flow detention time= 249.7 min calculated for 0.789 af (99% of inflow) Center-of-Mass det. time= 244.2 min (1,023.9 - 779.7)

Volume	Inve	ert Avail.	Storage	Storage Description	on		
#1	538.0	00' 2	0,626 cf	Custom Stage Da	a ta (Irregular) List	ted below (Recalc)	
Elevatio	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
538.0 539.0 540.0 541.0	00 00 00 00	5,054 6,243 7,489 8,791	387.0 405.8 424.7 423.9	0 5,638 6,857 8,131	0 5,638 12,495 20,626	5,054 6,305 7,621 8,049	
Device	Routing	Inv	ert Outle	et Devices			
#1	Primary	538.0	00' 15.0' L= 9 Inlet n= 0	" Round Culvert 4.0' CMP, square / Outlet Invert= 53 .013, Flow Area=	edge headwall, H 8.00' / 537.00' S 1.23 sf	Ke= 0.500 = 0.0106 '/' Cc= 0.9	100
#2 #3 #4	Device 1 Device 1 Device 1	538.0 538.0 539.0	00' 2.4'' 90' 4.0'' 50' 24.0' Limit	Vert. Orifice/Grate Vert. Orifice/Grate "Horiz. Orifice/Gra ed to weir flow at le	e C= 0.600 e C= 0.600 ate C= 0.600 ow heads		

Primary OutFlow Max=6.50 cfs @ 12.23 hrs HW=539.94' TW=534.02' (Dynamic Tailwater)

-1=Culvert (Passes 6.50 cfs of 6.65 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.20 cfs @ 6.52 fps)

-3=Orifice/Grate (Orifice Controls 0.39 cfs @ 4.49 fps)

-4=Orifice/Grate (Weir Controls 5.91 cfs @ 2.16 fps)

Summary for Pond 15P: Culvert at Entr.

Inflow Area	a =	4.001 ac,	15.42% Impervio	ous, Inflow	Depth = 6.	28" for 100	0-Year event
Inflow	=	18.30 cfs @	12.24 hrs, Volu	ume=	2.093 af		
Outflow	=	18.29 cfs @	12.24 hrs, Volu	ume=	2.093 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	18.29 cfs @	12.24 hrs, Volu	ume=	2.093 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 530.33' @ 12.24 hrs Surf.Area= 351 sf Storage= 389 cf

Plug-Flow detention time= 0.4 min calculated for 2.093 af (100% of inflow) Center-of-Mass det. time= 0.4 min (809.7 - 809.2)

Volume	Invert	Avail.Storage	Storage Description
#1	527.17'	1,407 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Pt E-Prop_Dn_Stream

Type III 24-hr 100-Year Rainfall=8.70" Printed 9/14/2017

Prepared by HDR II	nc					
HydroCAD® 10.00-19	s/n 05756	© 2016 H	ydroCAD	Software	Solutions	LLC

Page 40

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
527.17	6	14.0	0	0	6
528.00	44	35.0	18	18	90
529.00	121	58.1	79	98	268
530.00	266	92.9	189	286	693
531.00	555	117.6	402	688	1,120
532.00	897	157.4	719	1,407	2,001
Device Bouting	n Inv	ert Outlet	Devices		

Device	nouting	Invent	Outlet Devices
#1	Primary	527.17'	18.0" Round Culvert X 2.00
			L= 52.8' RCP, groove end w/headwall, Ke= 0.200
			Inlet / Outlet Invert= 527.17' / 526.65' S= 0.0098 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.77 sf
#2	Device 1	527.17'	18.0" W x 3.0" H Vert. Orifice/Grate C= 0.600
#3	Device 1	530.00'	72.0" x 72.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=18.29 cfs @ 12.24 hrs HW=530.33' TW=527.11' (Dynamic Tailwater) 1=Culvert (Passes 18.29 cfs of 28.48 cfs potential flow) 2=Orifice/Grate (Orifice Controls 3.15 cfs @ 8.39 fps)

-3=Orifice/Grate (Weir Controls 15.14 cfs @ 1.89 fps)

Summary for Pond 17P: Box Culvert for stream

Inflow Area	ત્ર =	57.525 ac,	3.12% Impervious, I	nflow Depth = 5.9	96" for 100-Year event
Inflow	=	175.13 cfs @	12.61 hrs, Volume=	28.547 af	
Outflow	=	174.13 cfs @	12.64 hrs, Volume=	28.547 af,	Atten= 1%, Lag= 1.8 min
Primary	=	174.13 cfs @	12.64 hrs, Volume=	28.547 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 534.93' @ 12.64 hrs Surf.Area= 11,204 sf Storage= 9,851 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.3 min (849.1 - 848.7)

Volume	Inv	ert Ava	il.Storage	Storage Descripti	on			
#1	533.	00'	25,714 cf	Custom Stage Da	ata (Irregular) Lisi	ted below (Recalc)		
Elevatic (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
533.0	00	412	159.8	0	0	412		
534.0	00	5,210	513.7	2,362	2,362	19,382		
535.0)0	11,714	795.5	8,245	10,608	48,748		
536.0	00	18,774	996.6	15,106	25,714	77,441		
Device	Routing	In	vert Outle	et Devices				
#1	Primary	532	2.20' 144.	0" W x 60.0" H Bo	ox Culvert			
	L= 51.5' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 532.20' / 530.66' S= 0.0299 '/' Cc= 0.900 n= 0.024, Flow Area= 60.00 sf							

Primary OutFlow Max=174.11 cfs @ 12.64 hrs HW=534.93' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 174.11 cfs @ 5.31 fps)

Summary for Pond 18P: Level Spreader

Inflow Area	ι =	19.937 ac,	92.58% Impe	ervious,	Inflow Dept	h > 7.3	33" for 100	D-Year event
Inflow	=	7.62 cfs @	14.63 hrs,	Volume	= 12.	180 af		
Outflow	=	7.62 cfs @	14.64 hrs,	Volume	= 12.	178 af,	Atten= 0%,	Lag= 0.4 min
Primary	=	7.62 cfs @	14.64 hrs,	Volume	= 12.	178 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 558.00' Surf.Area= 2,625 sf Storage= 7,350 cf Peak Elev= 558.27' @ 14.64 hrs Surf.Area= 2,625 sf Storage= 7,632 cf (282 cf above start)

Plug-Flow detention time= 34.0 min calculated for 12.007 af (99% of inflow) Center-of-Mass det. time= 0.5 min (1,496.0 - 1,495.5)

Volume	Inve	ert Ava	il.Storage	Storage Description						
#1	551.0)0'	8,400 cf	Custom \$ 21,000 cf	Stage Data (Prismat Overall x 40.0% Vo	tic) Listed below (Recalc) bids				
Elevatic (fee	on it)	Surf.Area (sq-ft)	Inc (cubi	.Store c-feet)	Cum.Store (cubic-feet)					
551.0 556.0 557.0 558.0 558.0)0)0)0)0)0	2,625 2,625 2,625 2,625 2,625 2,625	1	0 13,125 2,625 2,625 2,625 2,625	0 13,125 15,750 18,375 21,000					
Device	Routing	In	vert Outl	et Devices						
#1	Primary	558	3.00' 75.0 Limi	" x 35.0" H ted to weir	loriz. Orifice/Grate flow at low heads	C= 0.600				

Primary OutFlow Max=7.62 cfs @ 14.64 hrs HW=558.27' TW=558.10' (Dynamic Tailwater) -1=Orifice/Grate (Weir Controls 7.62 cfs @ 1.55 fps)

Summary for Pond 23P:

Inflow Area	=	0.805 ac,	73.17% Imp	ervious,	Inflow	Depth =	7.70"	for 100)-Year event
Inflow	=	6.82 cfs @	12.06 hrs,	Volume	=	0.516	af		
Outflow :	=	6.73 cfs @	12.08 hrs,	Volume	=	0.516	af, At	ten= 1%,	Lag= 0.8 min
Primary :	=	0.23 cfs @	15.93 hrs,	Volume	=	0.231	af		
Secondary	=	6.58 cfs @	12.08 hrs,	Volume	=	0.286	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 532.01' @ 12.08 hrs Surf.Area= 1,041 sf Storage= 790 cf

Plug-Flow detention time= 8.6 min calculated for 0.516 af (100% of inflow) Center-of-Mass det. time= 8.6 min (781.2 - 772.6)

Pt E-Prop_Dn_Stream

Prepared by HDR Inc

 Type III 24-hr
 100-Year Rainfall=8.70"

 Printed
 9/14/2017

 ns LLC
 Page 42

Volume	Inve	rt Avail.	Storage	Storage D	Storage Description					
#1	527.33	3'	793 cf	Custom S	Stage Data (Irregu	I lar) Listed below (F	Recalc)			
Elevatio	on s	Surf.Area	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area			
(fee	et)	(sq-ft)	(feet)	(%)	(cubic-feet)	(cubic-feet)	(sq-ft)			
527.3	33	4	8.0	0.0	0	0	4			
527.3	34	4	8.0	35.0	0	0	4			
530.1	16	4	8.0	35.0	4	4	27			
530.1	19	56	110.4	100.0	1	5	991			
531.0	00	317	180.9	100.0	137	141	2,630			
532.0)1	1,044	364.9	100.0	652	793	10,626			
Device	Routing	Inv	ert Outle	et Devices						
#1	Primary	527.3	33' 2.5''	Round Cu	ulvert					
	-		L= 1	6.0' CPP,	square edge head	dwall, Ke= 0.500				
			Inlet	/ Outlet Inv	vert= 527.33' / 527	7.17' S= 0.0100 '/'	Cc= 0.900			
			n= 0	.013, Flow	/ Area= 0.03 sf					
#2	Secondar	y 531.6	60' 30.0	deg x 7.7'	long x 0.40' rise \$	Sharp-Crested Vee	/Trap Weir			
			Cv=	2.61 (C= 3	3.26)					

HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solutions LLC

Primary OutFlow Max=0.23 cfs @ 15.93 hrs HW=531.57' TW=527.61' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.23 cfs @ 6.77 fps)

Secondary OutFlow Max=6.57 cfs @ 12.08 hrs HW=532.01' TW=530.29' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Orifice Controls 6.57 cfs @ 2.10 fps)

Summary for Pond 24P: Flow Splitter

Inflow Area	=	16.505 ac,10	0.00% Impervious,	Inflow Depth =	8.46" for 100	-Year event
Inflow	=	134.52 cfs @	12.10 hrs, Volume	e 11.636 a	ıf	
Outflow	=	134.52 cfs @	12.10 hrs, Volume)= 11.636 a	If, Atten= 0%,	Lag= 0.0 min
Primary	=	33.99 cfs @	12.10 hrs, Volume	e 8.655 a	ıf	
Secondary	=	100.53 cfs @	12.10 hrs, Volume)= 2.980 a	ıf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 570.34' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	562.96'	24.0'' Round Culvert L= 44.7' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 562.96' / 562.00' S= 0.0215 '/' Cc= 0.900 n= 0.013, Flow Area= 3.14 sf
#2	Secondary	562.96'	48.0'' Round Culvert L= 106.2' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 562.96' / 562.43' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 12.57 sf
#3	Device 2	565.70'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=33.98 cfs @ 12.10 hrs HW=570.34' TW=565.30' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 33.98 cfs @ 10.82 fps)

Secondary OutFlow Max=100.46 cfs @ 12.10 hrs HW=570.34' TW=561.68' (Dynamic Tailwater) 2=Culvert (Passes 100.46 cfs of 140.16 cfs potential flow) 3=Sharp-Crested Rectangular Weir (Weir Controls 100.46 cfs @ 7.05 fps)

Summary for Pond 28P: Ramp Culvert

Inflow Area	=	0.918 ac, 7	72.44% Impe	ervious,	Inflow Dep	oth =	7.62"	for 100)-Year	event
Inflow	=	6.75 cfs @	12.12 hrs,	Volume	= 0).583 ;	af			
Outflow	=	6.71 cfs @	12.13 hrs,	Volume	= 0).582	af, Atte	en= 0%,	Lag=	0.6 min
Primary	=	6.71 cfs @	12.13 hrs,	Volume	= 0).582	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 556.03' @ 12.13 hrs Surf.Area= 350 sf Storage= 196 cf Flood Elev= 557.00' Surf.Area= 534 sf Storage= 342 cf

Plug-Flow detention time= 1.2 min calculated for 0.582 af (100% of inflow) Center-of-Mass det. time= 0.9 min (780.0 - 779.1)

Volume	Inv	ert Avail	.Storage	Storage Description	on		
#1	554.0	61'	342 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
554.6 555.0 556.0 556.3	51 00 00 36	4 56 337 534	8.0 45.8 150.1 184.0	0 10 177 155	0 10 187 342	4 166 1,795 2,698	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	555	.00' 23.0 L= 3 Inlet n= 0	"W x 14.0"H, R=2 0.0'RCP, groove / Outlet Invert= 55 .013, Flow Area=	2.0" Elliptical RC end projecting, K 5.00' / 553.62' S= 1.83 sf	P_Elliptical 23x14 e= 0.200 = 0.0460 '/' Cc= 0.9	00

Primary OutFlow Max=6.71 cfs @ 12.13 hrs HW=556.03' TW=554.25' (Dynamic Tailwater) ←1=RCP_Elliptical 23x14 (Inlet Controls 6.71 cfs @ 3.96 fps)

Summary for Pond 29P: Gravel Inlet Trench

Inflow Area	ι =	1.259 ac, 7	1.41% Imp	ervious,	Inflow Dep	oth = 7	7.58" fo	r 100	-Year eve	ent
Inflow	=	8.38 cfs @	12.12 hrs,	Volume	= Č).795 a	f			
Outflow	=	8.38 cfs @	12.12 hrs,	Volume	= 0).795 at	f, Atten=	0%,	Lag= 0.0	min
Primary	=	8.38 cfs @	12.12 hrs,	Volume	= 0).795 at	f			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Pt E-Prop Dn Stream	Type III 24-hr	100-Year Rainfall=8.70"
Prepared by HDR Inc		Printed 9/14/2017
HydroCAD® 10.00-19 s/n 05756 © 2016 HydroCAD Software Solution	ons LLC	Page 44
		-

Peak Elev= 541.84' @ 12.13 hrs Surf.Area= 4 sf Storage= 5 cf

Plug-Flow detention time= 0.2 min calculated for 0.795 af (100% of inflow) Center-of-Mass det. time= 0.0 min (779.7 - 779.7)

Volume	Invert	Avail.Storag	ge Storage Description
#1	538.25'	14	cf 2.00'W x 2.00'L x 9.75'H Prismatoid 39 cf Overall x 35.0% Voids
Device	Routing	Invert C	Dutlet Devices
#1	Filliary	556.25 L li n	= 25.0' RCP, square edge headwall, Ke= 0.500 nlet / Outlet Invert= 538.25' / 538.00' S= 0.0100 '/' Cc= 0.900 = 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=8.33 cfs @ 12.12 hrs HW=541.83' TW=539.84' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 8.33 cfs @ 6.79 fps)

Summary for Pond 30P: Culvert 2

Inflow Area	l =	1.380 ac,	0.00% Impervious,	Inflow Depth =	5.92" for	100-Year event
Inflow	=	6.85 cfs @	12.24 hrs, Volume	= 0.681	af	
Outflow	=	6.85 cfs @	12.24 hrs, Volume	= 0.681	af, Atten= (0%, Lag= 0.0 min
Primary	=	6.85 cfs @	12.24 hrs, Volume	= 0.681	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 535.14' @ 12.24 hrs Flood Elev= 534.87'

Device Routing Invert Outlet Devices	
#1 Primary 533.66' 23.0'' W x 14.0'' H, R=22.0'' Elliptical RCP_Ellipt L= 24.0' CPP, mitered to conform to fill, Ke= 0.7 Inlet / Outlet Invert= 533.66' / 533.54' S= 0.0050 n= 0.013, Flow Area= 1.83 sf	t ical 23x14 700 '/' Cc= 0.900

Primary OutFlow Max=6.85 cfs @ 12.24 hrs HW=535.14' TW=534.21' (Dynamic Tailwater) **1=RCP_Elliptical 23x14** (Inlet Controls 6.85 cfs @ 3.75 fps)

Summary for Pond 31P: Culvert 3

Inflow Area	ι =	0.544 ac,	73.53% Impe	ervious,	Inflow	Depth =	7.74'	" for 10	0-Year ev	rent
Inflow	=	4.65 cfs @	12.06 hrs,	Volume=	=	0.351	af			
Outflow	=	4.65 cfs @	12.06 hrs,	Volume=	=	0.351	af, A	tten= 0%,	Lag= 0.0) min
Primary	=	4.65 cfs @	12.06 hrs,	Volume=	=	0.351	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 534.01' @ 12.06 hrs Flood Elev= 538.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	533.00'	23.0" W x 14.0" H, R=22.0" Elliptical RCP_Elliptical 23x14

L= 24.0' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 533.00' / 532.35' S= 0.0271 '/' Cc= 0.900 n= 0.013, Flow Area= 1.83 sf

Primary OutFlow Max=4.65 cfs @ 12.06 hrs HW=534.01' TW=533.02' (Dynamic Tailwater) **1=RCP_Elliptical 23x14** (Inlet Controls 4.65 cfs @ 2.77 fps)

Summary for Link 21L: Point A

Inflow /	Area	=	27.710 ac,	66.61% Impe	ervious,	Inflow Depth >	6.9	93" for 100)-Year event
Inflow	=	=	39.67 cfs @	12.29 hrs,	Volume	= 16.009) af		
Primar	y =	=	39.67 cfs @	12.29 hrs,	Volume	= 16.009) af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 22L: Point B

Inflow Ar	ea =	57.525 ac,	3.12% Impervious, Ir	flow Depth = 5.96	for 100-Year event
Inflow	=	174.13 cfs @	12.64 hrs, Volume=	28.547 af	
Primary	=	174.13 cfs @	12.64 hrs, Volume=	28.547 af, A	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 28L: Point F

Inflow /	Area	=	5.040 ac,	0.00% Impervious,	Inflow Depth = 5.9	92" for 100-Year event
Inflow	=	=	16.28 cfs @	12.57 hrs, Volume	= 2.486 af	
Primar	y =	=	16.28 cfs @	12.57 hrs, Volume	= 2.486 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link 29L: Point E

 Inflow Area =
 468.979 ac, 4.45% Impervious, Inflow Depth > 5.99" for 100-Year event

 Inflow =
 279.00 cfs @
 17.71 hrs, Volume=
 233.994 af

 Primary =
 279.00 cfs @
 17.71 hrs, Volume=
 233.994 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Technical Memorandum

Date	Friday, January 20, 2017
Project	Clear River Energy Center Town of Burrillville, Providence County, Rhode Island
То	Type recipient(s) here
From	Type sender(s) here
Subject	Revised HEC-RAS Model of Dry Arm Brook and Iron Mine Brook

1.0 INTRODUCTION

The purpose of this technical memorandum is to describe the updated modeling completed by HDR in support of the determination of the base flood elevations (BFEs) for Dry Arm Brook and Iron Mine Brook in Burrillville, Rhode Island. Hodge WaterResources (HWR) determined the BFEs for these two brooks upstream of Wallum Lake Road in a Technical Memorandum dated October 11, 2016. HDR was to update the model to show the effects of the culverts under Algonquin Road which allow water to flow from the Dry Arm Brook Basin into the Iron Mine Branch Basin. HDR completed the modeling using the Hydrologic Engineering Center's River Analysis System (HEC-RAS), which is developed and maintained by the United States Army Corps of Engineers (USACE) Hydrologic Engineering Center (HEC).

2.0 MODEL SETUP

The process of setting up a steady-flow HEC-RAS model includes four components.

- Development of Model Geometry
- Inclusion of Structures
- Determination of Upstream Flow Boundary Condition
- Determination of Downstream Water Level Boundary Condition

Model Geometry

HDR developed the channel geometry by digitizing the stream centerline; stream bank lines and crosssection locations for each brook based on Figure 3 in HWR's October 11, 2016 Technical Memorandum. In addition, HDR added a stream from Algoquin Road to Iron Mine Branch to help model any spillover from Dry Arm Brook to Iron Mine Branch and a stream was added parallel to Wallum Lake Road to help model the spillover from Iron Mine Branch south to another road crossing. The HEC-RAS geometric model was developed from the stream centerlines, edge of banks, and cross-sections that were mapped by Lidar furnished by the ESS Group, Inc. (ESS). Modifications were made to the cross-sections just above and below the culvert crossings to ensure the ground matched the entrance and exit of the culverts. The attached drawing "HEC-RAS Model Geometry and Floodplain Delineation" shows the locations of the cross-sections. For clarity, not all of the model is shown.

Inclusion of Structures

Both Dry Arm Brook and Iron Mine Branch cross under Wallum Lake Road through culverts. The culvert for Dry Arm Brook is a box culvert with a height of 2.42 ft, a width of 5.76 ft, and an upstream invert of 537.33 ft relative to the North American Vertical Datum of 1988 (NAVD88). The culvert for Iron Mine Brook is a double-barreled circular pipe culvert. Each pipe has a diameter of 2.5 ft and an upstream invert of 513.56 ft NAVD88. These dimensions were measured by ESS during a site survey conducted in August and October 2015. HDR used these measurements to incorporate the culverts into the HEC-RAS model. The culvert survey information was provided to HDR by ESS.

In addition to the culverts, HDR used a lateral structure in the modeling of Algonquin Road. The lateral structure allows water to flow under Algonquin Road when the flood waters back up high enough from the Dry Arm Brook culvert and flows into the Iron Mine Branch basin. Also, at the location where Iron Mine Brook enters the culvert under Wallum Lake Road, the topography of the surrounding area is such that if a surcharge were to occur at the upstream end of the culvert, water would flow east, parallel to Wallum Lake Road and away from the culvert. HDR modeled the potential for water to flow away from the culvert by including another stream adjacent to where Iron Mine Brook meets Wallum Lake Road.

Determination of Upstream Flow Boundary Conditions

In order to determine the BFE for a stretch of either brook, it is necessary to make a determination of the flow in the brook during a 1% annual chance storm event (commonly called a 100-year storm event). The original model used StreamStats to determine the flow in each stream. StreamStats estimates flows in Rhode Island based on studies completed by the USGS (Zarriello et al., 2012; Bent et al., 2014). The prediction of flow from StreamStats depends on the size of the watershed upstream of the requested point. StreamStats has a recommended minimum drainage area limit of 4 sq. miles. Both the Dry Arm Basin and the Iron Mine Basin are below this limit and therefore StreamStats was not used.

Dry Arm Brook has a stream gage on it by Wallum Lake Road so this data was used for the Dry Arm Book flows. In order to provide an appropriately conservative upstream steady-flow boundary for the model, HDR distributed the flow between the flow from the stream gage of Dry Arm Brook based on the relative sizes of their contributing watersheds. HDR drew the drainage areas based on the provided Lidar and calculated the flows for Iron Mine Branch using HydroCAD version 10.0. The subsequent flow values were applied to the boundary of Iron Mine Brook.

Determination of Downstream Water Level Boundary Condition

Dry Arm Brook and Iron Mine Brook drain to the western end of Wilson Reservoir, which in turn drains to the Clear River. The effective Flood Insurance Study (FIS) for Providence County (FEMA, 2015) provides a 1% annual chance flood profile of the Clear River, and the upstream limit is the outfall of Wilson Reservoir under East Wallum Lake Road. The 1% annual chance flood elevation at Wilson Reservoir at the location where Clear River flows from the Reservoir is 444 ft NAVD88. HDR used this water level as the downstream water level boundary condition in the HEC-RAS model.

After developing the model geometry, including all relevant structures, and specifying boundary conditions, HDR ran the HEC-RAS model in the steady flow condition in order to determine the BFEs for Dry Arm Brook and Iron Mine Brook.

3.0 MODEL RESULTS

The HEC-RAS model shows that 4.64 cfs during the 100 year storm flows from the Dry Arm Brook to the Iron Mine Branch. This additional water has no appreciable effect on the Iron Mine Branch Basin.

HEC-RAS Plan: Exist	Profile: 100 yr	Divor Sto	Drofile	O Tatal	Min Ch El	W.C. Elay	Crit W/ S	E.C. Elay	E.C. Sland	Val Chal	Elow Aroa	Top Width	Froudo # Chl
niver	neach	niver Sta	FIONE	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	Floude # Chi
IRON MINE BR	Upper	5582.71	100 yr	428.76	549.00	550.01	()	550.16	0.014332	3.10	138.23	172.06	0.61
IRON MINE BR	Upper	5357.25	100 yr	428.76	545.59	547.60	547.12	547.76	0.008250	3.30	151.32	134.77	0.50
IRON MINE BR	Upper	5174.02	100 yr	428.76	544.00	545.36		545.60	0.018148	3.99	117.51	138.90	0.70
IRON MINE BR	Upper	4856.72	100 yr	428.76	540.61	542.43		542.58	0.005828	3.24	169.80	128.25	0.44
IRON MINE BR	Upper	4604.34	100 yr	428.76	537.68	539.17		539.26	0.017182	3.60	120.31	299 15	0.67
IRON MINE BR	Upper	4390.26	100 yr	428.76	536.06	537.73		537.92	0.011703	3.60	143.77	167.49	0.58
IRON MINE BR	Upper	4339.74	100 yr	428.76	535.53	537.23		537.39	0.009050	3.31	154.73	182.34	0.52
IRON MINE BR	Upper	4238.33	100 yr	428.76	534.52	535.76	535.59	536.03	0.021854	4.34	121.63	157.16	0.77
IRON MINE BR	Upper	4134.29	100 yr	428.76	531.54	533.36	533.23	533.66	0.023660	4.58	114.21	211.42	0.81
IRON MINE BR	Upper	4046.46	100 yr	428.76	530.00	531.57	531.41	531.84	0.018667	4.42	127.90	240.77	0.73
IRON MINE BR	Upper	3900.5	100 yr	428.76	526.02	527.68	527.68	528.08	0.03/534	5.12	87.95	227.31	0.98
IBON MINE BB	Upper	3611 18	100 yr	420.70	523.99	525.34		525.49	0.006722	2.02	215.37	332 73	0.44
IRON MINE BR	Upper	3456.73	100 yr	428.76	522.64	524.77		524.85	0.003137	2.25	225.56	533.72	0.32
IRON MINE BR	North	2139.54	100 yr	152.44	552.00	554.65		554.68	0.001283	1.54	120.32	157.71	0.21
IRON MINE BR	North	1974.29	100 yr	152.44	551.59	553.99		554.21	0.009541	3.77	40.46	26.81	0.54
IRON MINE BR	North	1770.63	100 yr	152.44	548.24	550.19	550.19	550.79	0.035807	6.22	24.52	20.66	1.01
IRON MINE BR	North	1467.1	100 yr	152.44	540.99	543.46		543.50	0.001602	1.63	93.74	58.33	0.23
IRON MINE BR	North	1154.81	100 yr	152.44	539.99	542.66		542.76	0.003755	2.59	27.55	34.25	0.35
IBON MINE BR	North	636.25	100 yr	152.44	536.00	538.08		538.31	0.012188	3.86	39.47	30.35	0.00
IRON MINE BR	North	427.85	100 yr	152.44	533.99	535.59		535.75	0.012314	3.18	47.92	50.10	0.57
IRON MINE BR	North	354.85	100 yr	152.44	533.47	534.09	534.07	534.24	0.041458	3.07	49.73	137.93	0.90
IRON MINE BR	North	282.1	100 yr	152.44	531.85	532.78	532.76	533.01	0.042347	3.85	39.83	83.35	0.96
IRON MINE BR	North	264.10	100 yr	152.44	530.99	532.05	532.05	532.31	0.039736	4.22	41.53	97.70	0.96
IRON MINE BR	Middle	3386	100 yr	581.20	522.64	524.48		524.55	0.005382	2.50	426.87	518.59	0.40
IRON MINE BR	Middle	3346.58	100 yr	581.20	521.99	524.09		524.14	0.003945	2.43	527.27	582.89	0.35
IBON MINE BR	Middle	3154.54	100 yr	581.20	519.55	523.32	521 73	523.43	0.030307	2.82	201.45 95.17	185.44 92.28	0.38
IRON MINE BR	Lower West	3014.35	100 yr	122.52	513.49	519.96	JE1.73	519.97	0.000787	0.96	129.18	105.70	0.96
IRON MINE BR	Lower West	2988.35	100 yr	122.52	513.37	519.91	515.55	519.95	0.000605	1.72	91.39	209.71	0.13
IRON MINE BR	Lower West	2961	,	Culvert									
IRON MINE BR	Lower West	2872.42	100 yr	122.52	513.10	515.21		515.52	0.017332	4.45	27.56	21.89	0.70
IRON MINE BR	Lower West	2576.99	100 yr	122.52	508.87	510.21		510.34	0.017168	2.88	45.39	107.26	0.64
IRON MINE BR	Lower West	2283.58	100 yr	122.52	501.48	502.52	502.52	502.83	0.041936	4.46	27.49	132.04	0.99
IRON MINE BR	Lower West	2033.89	100 yr	122.52	491.99	493.24	493.13	493.53	0.026249	4.33	28.92	122.74	0.83
IRON MINE BR	Lower West	1548.29	100 yr	122.32	403.00	405.20	403.20	403.00	0.039027	3,83	32.40	24.07	0.70
IRON MINE BR	Lower West	1289.63	100 yr	122.52	466.27	467.53	467.53	467.87	0.042384	4.71	26.01	145.35	1.01
IRON MINE BR	Lower West	974.67	100 yr	122.52	452.00	453.02	453.02	453.36	0.041871	4.66	26.28	55.69	1.00
IRON MINE BR	Lower West	707.55	100 yr	122.52	446.62	448.04		448.07	0.003960	1.49	82.41	116.17	0.31
IRON MINE BR	Lower West	438.89	100 yr	122.52	444.00	445.21	445.21	445.47	0.048379	4.11	29.81	59.71	1.02
IRON MINE BR	Lower West	152.26	100 yr	122.52	442.00	444.38		444.39	0.000166	0.51	239.32	154.65	0.07
IRON MINE BR	Lower East	2851.75	100 yr	458.68	517.97	519.52	519.52	519.98	0.031441	5.62	102.27	131.36	0.94
	Lower East	2004.45	100 yr	458.68	515.00	517.01		517.06	0.001641	1.55	310.05	208.92	0.23
IBON MINE BR	Lower East	2400.3	100 yr	458.68	515.96	516.79		516.92	0.001992	2.84	165 56	217.82	0.25
IRON MINE BR	Lower East	2056.72	100 yr	458.68	513.00	516.40		516.44	0.001368	1.55	301.82	188.28	0.30
IRON MINE BR	Lower East	1817.17	100 yr	458.68	513.76	514.99	514.99	515.48	0.040963	6.42	107.85	117.15	1.08
IRON MINE BR	Lower East	1610.83	100 yr	458.68	505.05	506.89	506.89	507.53	0.030641	6.62	81.96	72.13	0.97
IRON MINE BR	Lower East	1505.77	100 yr	458.68	496.22	497.77	497.77	498.36	0.033639	6.20	78.33	73.06	0.99
IRON MINE BR	Lower East	1403.85	100 yr	458.68	490.23	491.68	491.64	492.17	0.028793	5.90	102.04	112.61	0.92
IRON MINE BR	Lower East	1265.67	100 yr	458.68	485.87	487.39	487.39	487.90	0.036837	5.77	/9.48	78.00	1.01
IBON MINE BR	Lower East	1017.25	100 yr	458.68	473.73	475.11	475.11	475.64	0.033581	5.91	85.80	93.11	0.98
IRON MINE BR	Lower East	889.8	100 yr	458.68	468.64	469.69	469.68	470.12	0.037593	5.53	103.15	131.61	1.00
IRON MINE BR	Lower East	667.81	100 yr	458.68	460.46	461.49	461.49	461.92	0.036308	5.34	93.54	121.21	0.98
IRON MINE BR	Lower East	466.67	100 yr	458.68	452.00	453.44		453.63	0.013205	3.55	137.79	153.92	0.61
IRON MINE BR	Lower East	229.03	100 yr	458.68	446.67	448.22	448.22	448.76	0.035353	5.93	78.77	79.84	1.00
INON MINE BR	Lower East	22.38	100 yr	458.68	440.50	444.00	441.56	444.01	0.000190	0.85	658.28	287.79	0.09
DRY ARM BRANCH	Upper	10503.76	100 yr	123.21	590.09	590.82	590.82	591.08	0.046185	4.05	30.57	62.14	1.00
DRY ARM BRANCH	Upper	10056.52	100 yr	123.21	583.00	583.76		583.80	0.005534	2.43	50.92 77 64	135 59	00.00
DRY ARM BRANCH	Upper	9858.27	100 yr	123.21	580.50	581.30	581.28	581.49	0.038532	3.54	38.34	97.39	0.91
DRY ARM BRANCH	Upper	9700.24	100 yr	123.21	576.22	577.33	577.13	577.51	0.017679	3.44	36.77	50.46	0.67
DRY ARM BRANCH	Upper	9597.79	100 yr	123.21	573.83	574.47	574.47	574.71	0.047174	3.92	31.82	70.59	1.00
DRY ARM BRANCH	Upper	9270.37	100 yr	123.21	562.25	563.90	563.62	564.14	0.016169	3.90	31.76	31.54	0.67
DRY ARM BRANCH	Upper	9167.45	100 yr	123.21	560.25	561.23	561.23	561.47	0.047834	3.93	32.49	77.10	1.01
DRY ARM BRANCH	Upper	89/3.86	100 yr	123.21	558.00	558.65		558.68	0.003904	1.32	93.73	161.01	0.30
DRY ARM BRANCH	Unner	8602.56	100 yr	123.21	557 00	550 NF		550.21	0.001523	0.90	139.03	222.72	0.19
DRY ARM BRANCH	Upper	8384.03	100 yr	123.21	557.00	557.95		557.95	0,000353	0.71	246.74	552.47	0.13
DRY ARM BRANCH	Upper	8173.76	100 yr	123.21	557.00	557.90		557.90	0.000168	0.33	377.83	787.30	0.07
DRY ARM BRANCH	Upper	7892.03	100 yr	123.21	557.00	557.86		557.86	0.000117	0.28	432.92	518.22	0.05
DRY ARM BRANCH	Upper	7674.11	100 yr	123.21	557.00	557.83		557.83	0.000223	0.38	325.49	413.80	0.08
DRY ARM BRANCH	Upper	7550.93	100 yr	123.21	557.00	557.79		557.79	0.000461	0.52	236.85	321.52	0.11
DRY ARM BRANCH	Upper	7464.25	100 yr	123.21	556.58	557.73		557.74	0.000929	0.86	251.99	309.57	0.16
DRY ARM BRANCH	Upper	/403.34	100 yr	123.21	556.02	557.67		557.68	0.000908	1.06	232.04	302.31	0.16
DRY ARM BRANCH	Unner	7206.12	100 yr	123.21	556.09	557 32		557.53	0.001023	1.17	144.70	297.08	0.21
DRY ARM BRANCH	Upper	7167.26	100 yr	123.21	556.00	557 28		557 29	0.000844	0.80	156.01	312 53	0.29
DRY ARM BRANCH	Upper	7086.28	100 yr	123.21	556.00	557.22		557.23	0.000670	0.74	178.50	330.95	0.13
DRY ARM BRANCH	Upper	7015.17	100 yr	123.21	556.00	557.13		557.15	0.001842	1.12	117.89	329.93	0.22
DRY ARM BRANCH	Upper	6919.96	100 yr	123.21	556.00	556.81		556.85	0.006120	1.72	78.59	290.78	0.38
DRY ARM BRANCH	Upper	6841.16	100 yr	123.21	556.00	556.66		556.67	0.001090	0.72	172.14	284.86	0.16
DRY ARM BRANCH	Upper	6743.15	100 yr	123.21	556.00	556.50		556.51	0.002668	0.93	131.99	278.32	0.24

HEC-RAS Plan: Exist	Profile: 100 yr (Co	ontinued)											
River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	(
DRY ARM BRANCH	Upper	6634.85	100 yr	123.21	555.01	556.31		556.32	0.001171	0.89	166.26	298.69	0.17
DRY ARM BRANCH	Upper	6485.16	100 yr	123.21	555.00	556.01		556.04	0.003821	1.37	94.32	326.79	0.30
DRY ARM BRANCH	Upper	6349.19	100 yr	123.21	555.00	555.63		555.65	0.002192	0.92	134.00	382.96	0.22
DRY ARM BRANCH	Upper	6280.52	100 yr	123.21	555.00	555.55		555.56	0.000827	0.54	232.63	488.83	0.13
DRY ARM BRANCH	Upper	6178.94	100 vr	123.21	555.00	555.48		555.48	0.000645	0.45	274.62	599.00	0.12
DRY ARM BRANCH	Upper	6057.85	100 vr	123.21	554.71	555.40		555.40	0.000720	0.43	287.47	734.33	0.12
DBY ABM BBANCH	North	1674	100 yr	76.79	555.01	556 13		556 14	0.000518	0.55	141.96	980.60	0.11
DBY ABM BBANCH	North	1300.2	100 yr	76.79	555.00	555.99		555.99	0.000312	0.00	184.47	1422 92	0.09
DBY ABM BRANCH	North	720.12	100 yr	76.79	555.00	555 75		555 75	0.000557	0.46	175 74	1035.21	0.00
DBY ABM BRANCH	North	597 35	100 yr	76.79	555.00	555.67		555.67	0.000825	0.40	138.45	714.45	0.11
	North	506.65	100 yr	76.79	555.00	555.60		555.60	0.000023	0.55	154.97	650.97	0.14
	North	400.40	100 yr	70.79	555.00	555.00		555.00	0.000734	0.50	134.07	700.01	0.13
DRY ARM BRANCH	North	429.49	100 yr	76.79	555.00	555.56		555.56	0.000305	0.34	230.26	720.81	0.08
DRY ARM BRANCH	North	344.15	100 yr	76.79	555.00	555.53		555.03	0.000622	0.46	167.09	695.26	0.12
DRY ARM BRANCH	North	253.41	100 yr	/6./9	555.00	555.49		555.49	0.000315	0.32	239.29	750.92	0.08
DRY ARM BRANCH	North	191.93	100 yr	/6./9	555.00	555.47		555.47	0.000263	0.28	2/0.28	/28.2/	0.07
DRY ARM BRANCH	North	89.36	100 yr	/6./9	555.00	555.43		555.43	0.000612	0.41	187.06	/64.50	0.11
DRY ARM BRANCH	Middle	5763.87	100 yr	200.00	554.19	554.96		554.98	0.002946	1.13	186.61	442.14	0.26
DRY ARM BRANCH	Middle	5670.22	100 yr	200.00	554.00	554.79		554.80	0.001271	0.79	255.45	422.90	0.17
DRY ARM BRANCH	Middle	5556.5	100 yr	200.00	554.00	554.64		554.65	0.001428	0.83	248.90	424.24	0.18
DRY ARM BRANCH	Middle	5495.35	100 yr	200.00	554.00	554.51		554.53	0.003053	1.02	201.74	443.81	0.26
DRY ARM BRANCH	Middle	5322.02	100 yr	200.00	552.88	553.79		553.82	0.005714	1.42	140.46	278.33	0.35
DRY ARM BRANCH	Middle	5201.33	100 yr	200.00	552.19	553.17		553.20	0.004806	1.34	149.37	285.10	0.33
DRY ARM BRANCH	Middle	5048.1	100 yr	200.00	551.99	552.85		552.86	0.001240	0.80	250.62	376.30	0.17
DRY ARM BRANCH	Middle	4784.92	100 yr	200.00	551.18	552.22		552.24	0.005942	1.23	163.11	416.46	0.35
DRY ARM BRANCH	Middle	4623	100 yr	200.00	549.99	551.42		551.46	0.003935	1.49	134.32	188.07	0.31
DRY ARM BRANCH	Middle	4620		Lat Struct									
DRY ARM BRANCH	Middle	4583.01	100 vr	200.00	549.97	551.16		551.24	0.007593	2.24	89.14	110.38	0.44
DRY ARM BRANCH	Middle	4507.85	100 yr	200.00	549.40	550.64		550.70	0.006784	1.90	105.28	153.92	0.40
DBY ABM BBANCH	Middle	4389.74	100 yr	200.00	547.80	549.13	549.06	549.25	0.027992	2.82	70.88	165.71	0.76
DBY ABM BBANCH	Middle	4351.23	100 yr	200.00	546.93	548.13		548.28	0.022872	3.05	65.57	117.12	0.72
DBY ABM BBANCH	Middle	4286 52	100 yr	200.00	546.34	547 84		547.86	0.002666	1 18	201 24	774 94	0.25
DBY ABM BRANCH	Middle	4254.94	100 yr	200.00	545.98	547 72		547.75	0.004731	1.54	162.92	858.37	0.34
DBY ABM BRANCH	Middle	4223 41	100 yr	200.00	545.96	547.54		547.58	0.005792	1.54	126.09	880.66	0.36
DRY ARM BRANCH	Middlo	4162.26	100 yr	200.00	546.00	546.61	546.60	546.90	0.003732	2.49	57.44	299.01	0.00
DRY ARM BRANCH	Middlo	4106.16	100 yr	200.00	545.00	546.51	340.00	546.52	0.047013	0.40	249.10	410.52	0.30
DRY ADM RDANCH	Middle	2044.92	100 yr	200.00	545.00	540.51		546.32	0.001500	0.01	240.10	419.33	0.10
	Middle	3944.02	100 yr	200.00	545.00	540.00		546.39	0.000559	0.05	320.32	403.12	0.12
DRY ARM BRANCH	Middle	3858.74	100 yr	200.00	545.45	546.21		546.26	0.012/59	2.06	141.67	362.93	0.52
DRY ARM BRANCH	Middle	3770.09	100 yr	200.00	544.46	545.71		545.73	0.003445	1.33	150.27	225.44	0.29
DRY ARM BRANCH	IVIIdale	3694.39	100 yr	200.00	543.98	545.58		545.59	0.001080	0.91	220.95	247.57	0.17
DRY ARM BRANCH	Middle	3542.79	100 yr	200.00	542.27	545.57	500.40	545.57	0.000049	0.38	636.47	341.//	0.04
DRY ARM BRANCH	Middle	3296.69	100 yr	200.00	537.20	545.56	539.43	545.56	0.000022	0.34	966.27	316.64	0.03
DRY ARM BRANCH	Middle	3250		Culvert									
DRY ARM BRANCH	Middle	3211.67	100 yr	200.00	536.55	538.64	538.64	539.40	0.034397	6.98	28.66	19.23	1.01
DRY ARM BRANCH	Middle	3026.39	100 yr	200.00	529.68	530.74	530.65	531.01	0.029257	4.20	47.57	63.18	0.85
DRY ARM BRANCH	Middle	2851.21	100 yr	200.00	523.70	524.72	524.71	525.06	0.039802	4.69	42.65	60.55	0.98
DRY ARM BRANCH	Middle	2651.4	100 yr	200.00	515.50	516.61	516.61	517.00	0.040909	4.96	40.33	53.76	1.01
DRY ARM BRANCH	Middle	2444.26	100 yr	200.00	506.24	507.54	507.53	507.91	0.039770	4.90	40.81	54.20	1.00
DRY ARM BRANCH	Middle	2328.41	100 yr	200.00	501.41	502.90	502.90	503.36	0.038629	5.48	36.52	40.04	1.01
DRY ARM BRANCH	Middle	2207.75	100 yr	200.00	496.15	497.86	497.83	498.26	0.035927	5.10	39.19	45.26	0.97
DRY ARM BRANCH	Middle	2081.27	100 yr	200.00	492.01	493.59	493.53	493.96	0.032179	4.87	41.10	47.01	0.92
DRY ARM BRANCH	Middle	1983.2	100 yr	200.00	488.56	490.06	490.06	490.53	0.038088	5.45	36.67	40.04	1.00
DRY ARM BRANCH	Middle	1883.54	100 yr	200.00	483.39	484.48	484.48	484.86	0.041002	4.96	40.33	53.81	1.01
DRY ARM BRANCH	Middle	1698.02	100 yr	200.00	476.43	477.54	477.49	477.88	0.033293	4.68	42.75	53.26	0.92
DRY ARM BRANCH	Middle	1607.13	100 yr	200.00	472.95	474.17	474.17	474.60	0.039370	5.25	38.10	45.26	1.01
DRY ARM BRANCH	Middle	1459.98	100 yr	200.00	467.66	468.74	468.71	469.09	0.035378	4.69	42.64	55.39	0.94
DRY ARM BRANCH	Middle	1357.47	100 yr	200.00	463.68	464.82	464.82	465.20	0.040567	5.00	40.01	52.34	1.01
DRY ARM BRANCH	Middle	1246.32	100 yr	200.00	460.11	461.14	460.97	461.31	0.019508	3.34	59.89	82.92	0,69
DRY ARM BRANCH	Middle	1085.08	100 yr	200.00	455,39	456.45	456.45	456.73	0.044879	4,22	47.39	86.32	1.00
DRY ARM BRANCH	Middle	861.63	100 yr	200.00	449.29	450.39	450.13	450.50	0,012603	2.58	77.37	113.42	0.55
DBY ABM BRANCH	Middle	698.48	100 yr	200.00	445 90	446 67	446 67	446 94	0.045369	4 19	47 73	88.57	1 01
DBY ABM BRANCH	Middle	577.6	100 yr	200.00	443 25	444 71		444 77	0.005524	2 02	116 55	175.61	0.38
	Middle	340.79	100 yr	200.00	442.00	444.25		444.07	0.000516	0.07	256.24	240.95	0.00
DRY ARM PRANCH	Middle	95.96	100 yr	200.00	4442.00	444.00		444.37	0.000310	0.97	705.00	440.00	0.13
DRY ARM PRANCH	Lower	357.61	100 yr	1914.00	05.1++-	444.34		AAA 17	0.001121	0.20	1207.14	517 AD	0.04
DRY ARM PRANCH	Lower	162.94	100 yr	1914.03	400.00	444.10	440.90	444.17	0.001131	1 70	2070 F4	00/ 7/	0.22
	I LUNCI	102.34	1100 91	1 1014.03	400.00	444.00	440.00	444.03	0.000404	1./0	2612.04	004.74	0.13

Calculations for the Flood Volume Encroachment

IRON BRANCH - NORTH - STA. 3+54.85 (Elev. 534.09)

IRON BRANCH - NORTH - STA. 2+82.10 (Elev. 532.78)

Calculations for the Flood Volume Encroachment

IRON BRANCH - NORTH - STA. 2+64.10 (Elev. 532.05)

FLOOD VOLUME CALCULATIONS							
Station	Area (sf)	Avg Area (sf)	Distance (ft)	Area (cf)			
3+54.85	49.67						
		44.75	28	1,253.00			
2+82.10	39.83						
2+82.10	39.83						
		40.66	16	650.56			
2+64.10	41.49						
			44	1,903.56	cf		
				70.50	су		

Exhibit 4

Appendix A: Stormwater Aanagement Checklist and LID Planning Report

APPENDIX A: STORMWATER MANAGEMENT CHECKLIST AND LID PLANNING REPORT							
PROJECT NAME: CLEAR RIVE		(RIDEM USE ONLY)					
CONTACT FOR STORMWATER	R DESIGN QUESTIONS: Alexande	er E. Deuson, P.E.					
PHONE NUMBER: (602) 385-1	621						
EMAIL ADDRESS: alexander.c	leuson@hdrinc.com						
BRIEF PROJECT DESCRIPTIO	N: New Electric Plant			DATE RECEIVED			
STOR	MWATER MANAGE	MENT PLAN	ELEME	NTS			
APPENDIX A: STORMWATER MANAGEMENT CHECKLIST	STORMWATER ANALYSIS AND DRAINAGE REPORT PLAN		N AND NTROL	OPERATIONS AND MAINTENANCE PLAN			
PART 1: PROJECT AND SITE INFORMATION	ADDRESSES MINIMUM STANDARDS:	ADDRESSE MINIMUM STAN	S DARDS:	ADDRESSES MINIMUM STANDARDS:			
MINIMUM STANDARDS: 6. REDEVELOPMENT 8. LUHHPL IDENTIFICATION PART 2. MINIMUM STANDARD: 1. LID SITE PLANNING PART 3. SUMMARY OF REMAINING STANDARDS PART 4. SUBWATERSHED MAPPING SITE PLAN DETAILS	 2. GROUNDWATER RECHARGE 3. WATER QUALITY VOLUME 4. CONVEYANCE & NATURAL CHANNEL PROTECTION 5. OVERBANK AND FLOOD PROTECTION 9. ILLICIT DISCHARGE DETECTION AND ELIM. 	7. POLLUTION PREV DURING CONSTR 10. CONSTRUCTION EROSION AND SEDIMENTATION CONTROL	VENTION UCTION	 7. POLLUTION PREVENTION AFTER CONSTRUCTION 11. OPERATIONS AND MAINTENANCE 			

Note: <u>All</u> stormwater construction projects <u>must submit</u> a Stormwater Management Plan (SMP). However, not every element listed below (see the Stormwater Management Plan Table) is required per the RISDISM and the RIPDES Construction General Permit (CGP). This checklist will help you identify the elements of the stormwater plan you are required to submit with your permit application.

PART 1. PROJECT AND SITE INFORMATION

PROJECT TYPE (Check all that apply)								
	X COMMERCIAL	D FEDERAL						
X ROAD	X UTILITY	X FILL		D MINE				

□ OTHER: (please explain)				
SITE INFORMATION				
X VICINITY MAP X EXISTING ZONING				
DISCHARGE LOCATION: The WQv disch discharge points on the project) (<u>Guidance to</u>	narges to: identify ro	(you may choose n <u>eceiving waters</u>)	nore than one answer if there are several	
	GROUND	WATER 🗆	I GAA 🗆 GA 🗆 GB	
X SURFACE WATER	□ ISOL □ NAME X UNNA	ATED WETLAND ED WATERBODY MED WATERBOD	DY CONNECTED TO NAMED WATERBDY	
MS4 S4 RIDC TOW OTHE		T 🗆 RIDOT ALTERATION PERMIT IS APPROVED N ER:		
RECEIVING WATER INFORMATION: (chec	ck all that o	apply and <u>repeat</u> t	his row for each waterbody)	
THE WATER QUALITY VOLUME DISCHARGES TO: IMPAIRED (303(d) LIST) N/A (discharges to: CSO, Disconnected wetland or Groundwater) SRPW WATERBODY NAME: Iron Mine Brook WATERBODY INAME: Iron Mine Brook WATERBODY ID: RI0001002R-06 IMPAIRMENTS: POND OF 50 ACRES OR MORE IMPAIRMENTS: KNOWN HISTORY OF REPETITIVE FLOODING (i.e. Pocassett River) CONTRIBUTES TO A PRIORITY OUTFALL LISTED IN THE TMDL CONTRIBUTES TO SHELLFISHING GROUNDS				
X PRE-APPPLICATION MEETING DATE:	<u>Oct. 2016</u> _			
RIDEM GRANT FUNDING INVOLVED			GRANT SOURCE:	
□ TOWN MASTER PLAN APPROVAL DATE:			MINUTES ARE ATTACHED	
□ SUBDIVISION SUITABILITY REQUIRED			APPROVAL #:	
PREVIOUS ENFORCEMENT ACTION HAS BEEN PROPERTY	N TAKEN OI	N THIS	ENFORCEMENT #	

FRESHWATER WEILANDS JURISL			
		:	AMOUNT OF CUT:(CY)
WITHIN THE 100-YR FLOODPL	AIN	-	Access road fills in a portion of the
RESTRICTIONS OR MODIFICAT FLOWPATH OR VELOCITIES IN	TINS ARE PROPOSED TO THE NA FLOODWAY.		floodplain but an area next to the road was cut to compensate for this encroachment.
□ FLOODPLAIN STORAGE CAPACI	TY IS IMPACTED		
CRMC JURISDICTION			
□ THIS PROJECT REQUIRES A CR	MC PERMIT		
□ THE PROPERTY IS SUBJECT TO	A SPECIAL AREA MANAGEMENT PLAN		
□ SEA LEVEL RISE MITIGATION	WAS DESIGNED INTO THIS PROJECT		
MINUMUM STANDARD 8: L	UHHPL IDENTIFICATION		
OFFICE OF WASTE MANAGEMENT	Г (OWM)		
THERE ARE KNOWN OR SUSPECTED RELEASES OF HAZARDOUS MATERIAL AT THE SITE			OWM CONTACT:
□ THIS SITE IS ON <u>THE LIST OF</u>	CERCLA and STATE SITES in RI		□ SITE ID#:
STORMWATER INDUSTRIAL PERM	ITTING		
 X THERE ARE EXISTING OR PROPOSED ACTIVITIES THAT ARE CONSIDERED LAND USES WITH HIGHER POTENTIAL POLLUTANT LOADS (LUHPPLS) (see Table 3-2) X CONSTRUCTION IS PROPOSED ON A SITE THAT IS SUBJECT TO THE MULTI-SECTOR GENERAL PERMIT (MSGP) UNDER RULE 31(B)15 OF THE RIPDES REGULATIONS. ADDITIONAL STORMWATER TREATMENT IS REQUIRED BY THE MSGP 			ACTIVITIES: <u>(SE) Electric Power Generation</u> <u>Natural Gas</u> SECTOR: <u>01</u> MSGP PERMIT #: <u>RIR500000</u> EXPLAIN ADDITIONAL TREATMENT:
MINIMUM STANDARD 6.	REDEVELOPMENT (*Required of	alcu	lation for all construction projects)
D PRE-CONSTRUCTION IMPERVIO	OUS AREA	TOT	TAL IMPERVIOUS AREA (TIA) =
CALCULATE THE SITE SIZE			TAL SITE AREA (TSA) =
SITE SIZE (SS) = (TSA) - (JW) - (CL) = JU			RISDICTIONAL WETLANDS (JW):
co			NSERVATION LAND (CL) =
	(TIA)/(SS) IS > 0.4)	(TI	A)/(SS) IS < 0.4)
(TIA)/(SS) =	U YES (REDEVELOPMENT)	XN	O (NEW DEVELOPMENT)
	(address minimum standards 3 and 7-11) X N		

PART 2: MINIMUM STANDARD 1

LOW IMPACT DEVELOPMENT ASSESSMENT

(NOT REQUIRED FOR REDEVELOPMENT OR RETROFITS) - You may delete this section if it is not required

State Law requires the use of low impact-design techniques as the primary method of stormwater control to the maximum extent practicable. LID is intended to maintain or replicate predevelopment hydrology through the use of site planning, source control, and small-scale practices integrated throughout the site to prevent, infiltrate, and manage runoff as close to its source as possible. Non-structural LID techniques to Avoid and Reduce the stormwater impacts of development shall be explored as a first priority before LID structural practices are planned to Manage stormwater as part of a comprehensive LID approach.

The applicant must document specific LID Site Planning and Design Strategies applied for the project (see Manual Chapter Four and the *RI Low Impact Development (LID) Site Planning and Design Guidance Manual* for more details regarding each strategy). This checklist is designed to guide the required documentation of the site planning process, and to ensure that the proposed project is consistent with and taking advantage of LID strategies required or allowed in the municipality where the project is proposed. Included within this checklist are specific LID techniques (and practices) taken from the *RI Low Impact Development (LID) Site Planning and Design Guidance Manual* that a municipality may require or allow.

If a particular strategy is not used or not applicable, a written description of why a certain method is not used or applicable at the site must be provided. Appropriate answers may include such statements as:

- Town requires XXX (state the specific local requirement)
- Meets Town's dimensional requirement of XXXXX.
- Not practical for site because XXXXXX.
- Applying for waiver/variance to achieve this (pending; was approved; was denied)
- Applying for wavier/variance to seek relief from this (pending; approved; denied)

A)	PRESERVATION OF UNDISTURBED AREAS, BUFFERS AND FLOODPLAINS	IF NOT IMPLEMENTED - EXPLAIN HERE
Х	Sensitive resource areas and site constraints are identified (required)	
х	Local development regulations have been reviewed (required)	
	All vegetated buffers and coastal and freshwater wetlands have been designed to be protected during and after construction	
х	Conservation Development or other site design technique to protect open space and pre-development hydrology; [NOTE: If this technique has been used, check box and skip to ${f c}$.]	
	Maintain as much natural vegetation and pre-development hydrology as possible	
B)	LOCATE DEVELOPMENT IN LESS SENSITIVE AREAS AND WORK WITH THE NATURAL LANDSCAPE CONDITIONS, HYDROLOGY, AND SOILS	IF NOT IMPLEMENTED - EXPLAIN HERE This is a LUHPPL Project
	Building envelopes/ development sites directed away from wetlands/waterbodies	
	Development and stormwater systems are located in areas with greatest infiltration capacity (e.g., soil groups A and B.	
	Plans show measures to prevent soil compaction in areas designated as Qualified Pervious Areas (QPA's)	
	Building envelopes/ development sites are directed away from floodplains	
	Site designed to locate buildings, roadways and parking to avoid impacts to surface water features.	
	Building envelopes/ development sites directed away from steep slopes (≥15%)	
	Other:	
C)	MINIMIZE CLEARING AND GRADING	IF NOT IMPLEMENTED - EXPLAIN HERE
XS	ite clearing restricted to <u>minimum area needed</u> for building footprints, development activities, construction access and safety.	
Х	Site designed to locate buildings, roadways and parking to minimize grading (cut and fill quantities)	
Х	Protection for stands of trees and individual trees and their root zones to be preserved is specified and such protection extends at least to the drip line	
	Notes on plan specify that public trees that are removed or damaged during construction shall be replaced with equivalent.	This is Private Property

D)	REDUCE IMPERVIOUS COVER	IF NOT IMPLEMENTED - EXPLAIN HERE
Х	Reduce roadway widths (\leq 22 feet for ADT \leq 400; \leq 26 feet for ADT 400-2,000)	This is a industrial power generation facility Road widths are set to
	Reduce driveway areas (length minimized via reduced ROW width (\leq 45 ft.) and/or reduced (or absolute minimum) front yard setback; width minimized to \leq 9 ft. wide one lane; \leq 18 ft. wide two lanes; shared driveways; pervious surface)	accommodate full range and size of vehicles up to and including semi trailer trucks.
Х	Reduced building footprint: Explain approach	Limited powerblock area
х	Reduce sidewalk area (s 4 ft. wide; one side of the street; unpaved path; pervious surface)	None proposed
Х	Reduce cul-de-sacs (radius < 45 ft; vegetated island; alternative turn-around)	None proposea
	Reduced parking lot area: Explain approach	
Х	Pervious surfaces (driveways, sidewalks, parking areas/overflow parking area)	
	Maximum Impervious Surface (project meets or is less than the maximum specified by the Zoning Ordinance	
	Other (describe):	
E)	DISCONNECT IMPERVIOUS AREA	IF NOT IMPLEMENTED - EXPLAIN HERE
	Impervious surfaces have been disconnected and runoff has been diverted to QPAs to the maximum extent possible	LUHPPL Site
	Residential street edges allow side-of-the-road drainage into vegetated open swales	
	Parking lot landscaping breaks up impervious expanse AND accepts runoff	
	Other:	
F)	MITIGATE RUNOFF AT THE POINT OF GENERATION	IF NOT IMPLEMENTED - EXPLAIN HERE
X	Small-scale BMPs have been designated to treat runoff as close as possible to the source	Dry Swale
G)	PROVIDE LOW-MAINTENANCE NATIVE VEGETATION	IF NOT IMPLEMENTED - EXPLAIN HERE
Х	Low-maintenance landscaping is proposed using native species and cultivars	
Х	Plantings of native trees and shrubs in areas previously cleared of native vegetation are shown on the site plan	
	Lawn areas have been limited and/or minimized and yards have been kept undisturbed to the maximum extent on residential lots	
H)	RESTORE STREAMS/WETLANDS	IF NOT IMPLEMENTED - EXPLAIN HERE
	Historic drainage patterns have been restored by removing closed drainage systems, daylighting buried streams, and/or restoring degraded stream channels and/or wetlands.	N/A no historical drainage patterns No invasive species
	Removal of invasive species	
Х	Other	Removed tiow restrictions from existing culverts

PART 3: SUMMARY OF REMAINING STANDARDS

Minimum Standard 2: Groundwater Recharge

If No, please explain the justification for groundwater recharge criterion waiver (i.e. threat of groundwater contamination, or physical limitation), if applicable (see Section 3.3.2);

Please describe your waiver request ____

LUHHPL Site

■ YES ■ NO Has any part of the site been approved for infiltration by the Office of Waste Management? (see <u>Subsurface Contamination Guidance</u>)

□ YES □ NO Is there an ELUR on the property?

	Total	LID Stormwater Credits (Manual see Section 4.6.1)		Recharge	Recharge Provided by	
Subwatershed	Required (Acre-ft)	Impervious volume directed to a QPA (acre-ft)	Recharge Credit Applied (acre-ft)	Remaining BMPs (acre-ft)	BMPs (acre-ft)	
DP-1: Point B	0.0187	N/A	N/A	0	0.024	
DP-2: Point C	0.0123	N/A	N/A	0	0.049	
DP-3:						
DP-4:						
Totals:	0.031	N/A	N/A	0	0.073	

TABLE 2-1: Summary of Recharge (see Manual section 3.3.2)

*Note: Only BMPs listed in Manual Table 3-5, List of BMPs Acceptable for Recharge may be used to meet the recharge requirement.

Indicate below where the pertinent calculations and/or information for the above items are provided (i.e. name of report/document, page numbers);

Appendix C - Sections 3 & 4

Minimum Standard 3: Water Quality

X YES Does this project meet or exceed the required water quality volume WQv (see section 3.3.3)?

× YES □ NO Is the proposed final impervious cover is greater than 20% of the disturbed area (see section 3.3.3)?
 □ If yes, the Spit Pervious/Impervious method in Hydro-Cad was used to calculate WQv, or

	🛛 If yes	, TR-55 or TR-20 was used to calculate WQv, and
	🗌 lf no	the project meets the minimum WQv of 0.2 watershed inches over the entire disturbed area.
X YES	□ NO	Does this project meet or exceed the ability to treat required water quality flow WQf(see section 3
□ YES	X NO	Is there an increase of impervious cover to a receiving water body with impairments?
		If yes, please indicate below the method that was used to address the water quality requirement further degradation to a low quality water.
		RISDISM section H.3 Pollutant Loading Analysis
		□ The Water Quality Guidance Document (Water Quality Goals and Pollutant Loading Analysis Guidance for Discharges to Impaired Waters)
□ YES	X NO	BMPs are proposed that are on the <u>approved technology list</u> if yes, please provide all of the rec worksheets from the manufacturer.
□ YES	X NO	Additional pollutant-specific requirements and/or pollutant removal efficiencies are applicable to as the result of a TMDL, SAMP or other watershed-specific requirements; If yes, please descri

	Total WQ _v	LID Stormv (Manual see	water Credits Section 4.6.1)	Water Quality	Water Quality Provided by BMPs (acre-ft)	
Subwatershed	Requirea (Acre-ft)	Impervious volume directed to a QPA (acre-ft)	Water Quality Credit Applied (acre-ft)	Remaining (acre-ft)		
DP-1: Point A	1.376	N/A	N/A	0.121	1.497	
DP-2: Point B	0.075	N/A	N/A	0.024	0.094	
DP-3: Point C	0.049	N/A	N/A	0	0.049	
DP-4:						
Totals:	1.500	N/A	N/A	0.145	1.640	

TABLE 3-1: Summary of Water Quality (see Manual section 3.3.3)

*Note: Only BMPs listed in Chapter 5 of the Manual or the Approved Technologies List of BMPs is Acceptable for Water Quality treatment.

X YES D NO This project has met the setback requirements for each BMP. If no, please explain

Indicate below where the pertinent calculations and/or information for the above items are provided (i.e. name of report/document, page numbers);

Appendix C - Sections 3 & 4

<u>Minim</u>	um Sta	andard 4: Conveyance and Natural Channel Protection (3.3.4)
□ YES	X NO	Is this standard waived? If yes, please check indicate one or more of the reasons below:
		 The project directs discharge to a large river (i.e., 4th-order stream or larger. See Appendix I for State-wide list and map of stream order), bodies of water >50.0 acres in surface area (i.e., lakes, ponds, reservoirs), or tidal waters. The project directs is a small facility with impervious cover of less than or equal to 1 acre.
		The project has a post-development peak discharge rate from the facility that is less than 2 cfs for the 1-year, 24-hour Type III design storm event (prior to any attenuation). (NOTE: <i>LID design strategies can greatly reduce the peak discharge rate</i>)
X YES	□ NO	Conveyance and natural channel protection for the site have been met.
		If no, explain why

TABLE 4-1: Summary of Channel Protection Volumes (see Manual section 3.3.4)

Drainage Point	Receiving Water Body Name	Coldwater Fishery? Y/N	Total CPv Required (acre-ft)	Total CPv Provided (acre-ft)	Release Rate Modeled in the 1-yr storm (cfs)
DP-1:	Iron Mine Brook	N	5.97	4.31	2.57
DP-2:	Iron Mine Brook	N	0.61	0.11	0.26
DP-3:					
DP-4:					
Totals:			6.58	4.42	2.83

X YES D NO The CPv is released at roughly a uniform rate over a 24-hour duration (see example sizing calculations in Appendix D of the RISDISM).

YES X NO Do additional design restrictions apply resulting from any discharge to cold water fisheries; If yes, please indicate restrictions and solutions

F

X Indicate below where the pertinent calculations and/or information for the above items are provided (i.e. name of report/document, page numbers);

__Appendix C_____

Minim	um Sta	andard 5: Overbank Flood Protection (3.3.5) (and other potential high flows)							
□ YES	X NO	Is this standard waived? If yes, please check indicate one or more of the reasons below:							
		 The project directs discharge to a large river (i.e., 4th-order stream or larger. See Appendix I for State-wide list and map of stream order), bodies of water >50.0 acres in surface area (i.e., lakes ponds, reservoirs), or tidal waters. A Downstream Analysis (see section 3.3.6), indicates that peak discharge control would not be beneficial or would exacerbate peak flows in a downstream tributary of a particular site (i.e. through coincident peaks) 							
□ YES	X NO	Does the project flow to an MS4 system? If yes, indicate below:							
		RIDOT Other							
		(NOTE: your project could be approved by RIDEM but not meet RIDOT or Town standards. RIDOT's regulations indicate that post-volumes must be less than pre-volumes for the 10-yr storm at the design point entering the RIDOT system). If you have not already received approval for the discharge to an MS4, please explain your strategy to comply with RIDEM and the MS4.							
X YES		Did you use a model for your analysis, if yes, indicate below							
		\square TR-55 X TR-20 X Hydrocad \square Other							
X YES	□ NO	Does the hydrologic model demonstrate that flows from the 100-year event will be safely conveyed to a control practice designed to manage the 100-year event? If no, please explain							
X YES		Do off-site areas contribute to the subwatersheds and design points? If ves.							
_		X YES IN NO Are the areas modeled as "present condition" for both pre- and post-development analysis							
		X YES 🔲 NO Are the off-site areas are shown on the subwatershed maps							
		X YES Does the hydrologic model confirm safe passage of the 100-year flow through the site for off-site runoff;							
X YES	□ NO	Is a Downstream Analysis required? (see Manual Section 3.3.6):							
		Please calculate the following:							
		Area of disturbance within the sub-watershed (areas) <u>35.14</u>							
		Impervious cover (%) <u>51.8</u>							
□ YES	X NO	Is a dam breach analysis required (earthen embankements over six (6) feet in height, or a capacity of 15 acre-feet or more, and contributes to a significant or high hazard dam?							
X YES	□ NO	Does this project meet the overbank flood protection standard?							

Table 5-1 Hydraulic Analysis Summary

Subwatershed (design point)	1.2" Peak Flow Pre Post (cfs) (cfs)		1-yr Peak Flow Pre Post (cfs) (cfs)		10-yr Peak Flow Pre Post (cfs) (cfs)		100-yr Peak Flow Pre Post (cfs) (cfs)	
DP-1: Point A	0.39	1.30	6.5	6.44	20.16	18.29	46.68	40.42
DP-2: Point B	2.12	1.52	28.94	24.02	86.73	74.75	197.47	174.13
DP-3: Point C	0.17	0.3	2.89	2.88	9.01	8.29	20.85	18.29
DP-4: Point F	0.26	0.14	4.23	2.27	13.08	7.01	30.37	16.28
DP-5: Point D	2.72	2.65	45.55	44.54	140.96	137.55	327.06	319.56
Totals:	5.66	5.91	88.11	80.15	269.94	245.89	622.43	568.68

X Indicate below where the pertinent calculations and/or information for the above items are provided (i.e. name of report/document, page numbers);

 Existing condition analysis for each subwatershed, including (curve numbers, times of concentration, runoff rates, volumes, and water surface elevations showing methodologies used and supporting calculations);

Appendix C - Section 11

 Proposed condition analysis for each subwatershed, including (curve numbers, times of concentration, runoff rates, volumes, water surface elevations, and routing showing the methodologies used and supporting calculations);

Appendix C – Section 12

✓ Final sizing calculations for structural stormwater BMPs including, contributing drainage area, storage, and outlet configuration;

Appendix C - Section 6

✓ Stage-storage, inflow and outflow hydrographs for storage facilities (e.g., detention, retention, or infiltration facilities);

Appendix C – Section 12

	Table 5-2 Summary of Best Management Practices									
DP No.	BMP ID.	BMP Type (i.e. bioretention or tree filter)	BMP Functions (acre-ft)			Overbank Flood Reduction	Internal Bypass	Horizontal Setback Criteria Met		
			Pre- treatment (volume)	Re _v	WQ _v	CPv	Y/N	Y/N	Distance (ft)	From constraint (i.e. private well or foundation)
A	2P & 3P	Gravel WVTS	0.14	0	1.24	5.23	Y	Y	N/A	N/A
В	15R & 25R	Dry Swales	0	0	0.07	0.28	Y	N	588'	Building
С	18R & 20R	Dry Swales	0	0	0.05	0.55	Y	N	184'	Private Water Well
		TOTAL:	0.14	0	1.36	6.06				

	Table 5-3 Summary of Soils to evaluate each BMP									
DP	BMP ID.	BMP Type (i.e.	Soils Analysis for Each BMP							
NO.		 bioretention or tree filter) 	Primary Test	Secondary t Pit ID #	Top of Filter Elevation (ft)	SHWT Elevation (ft)	Separation Distance (ft)	Hydrologic Soil Group A,B,C or D	Exfiltration Rate Applied (in/hr)	
1	3P	GWVTS	N/A		N/A	N/A	N/A	D	N/A	
2	18R 20R	Dry Swale	TP-3		530.16	531	-0.84	D	0.9	
3	15R 29R	Dry Swale	TP-5		548.1	542	6.1	D	0.1	
		TOTAL:								

Minimum Standard 7: (questions are now asked in Minimum Standard 10 and 11)

Minimum Oten developed to and the security think or Determined Deflectant Leads (LUUDDLe)

Minimum Stand	dard 8: Land Uses with Higher Potential Poliutant Loads (LUHPPLS)
X YES D NO Are Tal	there any existing activities or land uses proposed that would be considered LUHPPLs (see Manual ble 3-2)? If yes, please describe. If no, you may continue on to Minimum Standard 9:
Ele	ectric Power Facility
YES X NO Are M	e these activities already covered under an MSGP? If, no please explain if you have applied for an SGP, or intend to do so?
_	
X YES 🔲 NO 🗌 dra LU] List the specific BMPs that are proposed for this project that receive stormwater from LUHPPL ainage areas. These BMP types must be listed in Manual Table 3-3, "Acceptable BMPs for Use at HPPLs";
P	lease list BMPs Lined Gravel WVTS
Additional BMP	es, or additional pretreatment BMP's if any, that meet RIPDES MSGP requirements;
Pl	lease list BMPs
Indicate below report/documer numbers);	where the pertinent calculations and/or information for the above items are provided (i.e. name of nt, page
//	

Minimum Standard 9: Illicit Discharges

□ YES □ YES	NONO	Have you checked for illicit discharges? N/A Have any been found and/or corrected? If yes, please identify
X YES	DNO [Does your report explain preventative measures that keep non-stormwater discharges out of the Waters of the State (during and after construction)?

Minimum Standard 10 Soil Erosion and Sediment Control

X YES NO Have you included a Soil Erosion and Sediment Control Plan Set and/or Complete Construction Plan Set?
 X YES NO Did you provide a separately bound document based upon the <u>SESC Template</u>? If yes, proceed to Minimum Standard 11 (the following items can be assumed to be addressed). If no, include a document with your submittal that addresses the following: Elements of a SESC Plan:

 Soil Erosion and Sediment Control Plan project narrative including a description of how the fifteen (15) Performance Criteria have been met:
 Provide Natural Buffers and Maintain Existing Vegetation;
 Minimize Area of Disturbance;

Minimize the Disturbance of Steep Slopes;

		 Preserve Topsoil; Stabilize Soils; Protect Storm Drain Inlets; Protect Storm Drain Outlets;
		 Frotor Orbin Brain Octools, Establish Temporary Controls for the Protection of Post-Construction Stormwater Control Measures; Establish Perimeter Controls and Sediment Barriers; Divert or Manage Run-On from Up-Gradient Areas; Properly Design Constructed Stormwater Conveyance Channels; Retain Sediment On-Site; Control Temporary Increases in Stormwater Velocity, Volume, and Peak Flows; Apply construction Activity Pollution Prevention Control Measures; Install, Inspect, and Maintain Control Measures and Take Corrective Actions. Qualified SESC plan preparer's information and certification;
		 Operator's information and certification; if not known at the time of application the operator must certify the SESC Plan upon selection and prior to initiating site activities; Description of control measures such as temporary sediment trapping and conveyance practices, including design calculations and supporting documentation, as required.
<u>Minim</u> Polluti	um Sta ion Pre	andard 7&11: Stormwater Management System Operation, Maintenance and evention Plan (See section 3.2.11 and Appendices G and E for guidance)
X YES	□ NO	Have you minimized all sources of pollutant contact with stormwater runoff, to the maximum extent practicable?
X YES	□ NO	Have you provided a separately bound Operations, Maintenance and Pollution Prevention Manual for the site and for all of the BMPs?
The (O	&M and	PP Plan Contains):
X YES	□ NO	Contact name, address, and phone number of the responsible party for maintenance;
X YES	🔲 NO	8.5" x 11" map indicating the location of all of the proposed stormwater BMPs that will require maintenance;
X YES	□ NO	Description of routine and non-routine maintenance tasks and their frequency for required elements for each BMP;
🗆 YES	X NO	A description and delineation of public safety features;
X YES	□ NO	An estimated operations and maintenance budget;
🗖 YES	X NO	Minimum vegetative cover requirements;
X YES	□ NO	Access and safety for maintenance?

X YES DNO Lawn, Garden and Landscape Management meet the requirements of section G.7? If not, why not?

YES X NO Is the property owner or homeowners association is responsible for the stormwater maintenance of all BMP's? If no, you must provide a legally binding and enforceable maintenance agreement (see Appendix E-page 26) that identifies the entity that will be responsible for maintenance of the stormwater. Please indicate where this agreement can be found in your report: N/A

YES X NO Do you anticipate that you will need legal agreements related to the stormwater structures? (e.g. off-site easements, deed restrictions, and covenants). If yes, have you obtained them? Or please explain your plan to obtain them:

■ YES X NO Is stormwater being directed from public areas to private property? If yes, (**NOTE**: this is not allowed unless there is a funding mechanism in place to provide the finances for the long-term maintenance of the BMP and drainage unless there is a funding mechanism is demonstrated that can guarantee the long-term maintenance of a stormwater BMP by an individual homeowner)

Pollution Prevention Section Contains:

- X YES Do Designated snow stockpile locations?
- X YES D NO Trash racks to prevent floatables, trash and debris from discharging to waters of the state?
- □ YES X NO Asphalt only based sealants?

■ YES X NO Pet waste stations? (**NOTE:** *if a receiving water has a bacterial impairment and the project involves housing units, this could be an important part your pollution prevention plan*)

- YES X NO Regular sweeping? Please describe _
- X YES **NO** Deicing specifications in accordance with Appendix G of the Manual. (**NOTE**: *if the groundwater is GAA or this area contributes to a drinking water supply, this could be an important part of your pollution prevention plan (see Appendix G):*

X YES NO A prohibition of phosphate based fertilizers? (**NOTE**: *if the site discharges to a phosphorus impaired waterbody, this could be an important part of your pollution prevention plan*)?

PART 3: SUBWATERSHED MAPPING AND SITE PLAN DETAILS

Existing and Proposed Subwatershed Mapping (REQUIRED)

- X Existing and proposed drainage area delineations
 - ✓ Locations, cross sections, and profiles of all streams and drainage swales and their method of stabilization;
 - Drainage flow paths, mapped according to the DEM Guidance for Preparation of Drainage Area Maps (included in Appendix K).
 - ✓ Complete drainage area boundaries; include off-site areas in both mapping and analyses, as applicable;
 - ✓ Logs of borings and/or test pit investigations along with supporting soils/geotechnical report.

Mapped seasonal high water table,

- X Mapped locations of the site-specific borings and/or test pits and soils information from the test pits at the locations of the BMPs
- X Mapped locations of the BMPs with the BMPs consistently identified on the Site Construction Plans

Mapping bedrock within 3' of any BMP

YES X NO Soils were logged by a:

DEM-licensed Class IV soil evaluator Name:

RI-registered PE. Name; ______

Subwatershed Summary (add or subtract rows as necessary)							
Subwatershed (acres to each design point)	First Receiving Water ID or MS4	Area Disturbed (acres)	Existing Impervious (acres)	Proposed Impervious (acres)			
DP-1: Point A	RI0001002R-06	6.02	0	18.46			
DP-2: Point B	RI0001002R-06	19.00	1.86	1.80			
DP-3: Point C	RI0001002R-06	0.88	0	0.62			
DP-4: Point F	RI0001002R-06	3.63	0	0			
DP-5: Point D	RI0001002R-06	4.10	0	0			
Totals:		33.63	1.86	20.88			

Site Construction Plans (the following applicable specifications are provided)

- \checkmark Existing and proposed plans (scale not greater than 1" = 40') with North arrow
- ✓ Existing and proposed site topography (with 1 or 2-foot contours). 10-foot contours accepted for off-site areas
- ✓ Boundaries of existing predominant vegetation and proposed limits of clearing;
- ✓ Site Location clarification
- ✓ Location and field-verified boundaries of resource protection areas such as:
 - freshwater and coastal wetlands, lakes, ponds,
 - coastal shoreline features
 - ▶ Perennial and intermittent streams, in addition to areas subject to storm flowage (ASSFs);
- ✓ All required setbacks (e.g., buffers, water supply wells, septic systems);
- Representative cross-section and profile drawings, notes and details of structural stormwater management practices and conveyances (i.e., storm drains, open channels, swales, etc.), which include:
 - Location and size of the stormwater treatment practices (type of practice, depth, area). Stormwater treatment practices (BMPs) must have labels that correspond to table 5-2;
 - Design water surface elevations (applicable storms);
 - Structural details of outlet structures, embankments, spillways, stilling basins, grade control structures, conveyance channels, etc.;
 - Existing and proposed structural elevations (e.g., invert of pipes, manholes, etc.);

- Location of floodplain and, if applicable, floodway limits and relationship of site to upstream and downstream properties or drainage that could be affected by work in the floodplain;
- Planting plans for structural stormwater BMPs, including species, size, planting methods, and maintenance requirements of proposed planting;
- Logs of borings and/or test pit investigations along with supporting soils/geotechnical report and corresponding water tables.
- ✓ Mapping of any OWM approved activities related to current/former site use areas for any known contamination and/or remedial clean-up efforts.
- ✓ Location of existing and proposed roads, buildings, and other structures including limits of disturbance;
 - ► Existing and proposed utilities (e.g., water, sewer, gas, electric) and easements;
 - Location of existing and proposed conveyance systems such as grass channels, swales, and storm drains, as well as location(s) of final discharge point (wetland, waterbody);
 - ► Cross sections of roadways, with edge details such as curbs and sidewalks;
 - ► Location and dimensions of channel modifications, such as bridge or culvert crossings;
 - Locations, cross sections, and profiles of all stream or wetland crossings and their method of stabilization

Exhibit 5 Email from Chuck Hobert

From: Horbert, Chuck (DEM) [mailto:chuck.horbert@dem.ri.gov]
Sent: Tuesday, September 5, 2017 2:52 PM
To: Niland, John <JNiland@invenergyllc.com>; Craig Wood <cwood@essgroup.com>; jamie.durand@powereng.com; chad.jacobs@hdrinc.com
Cc: Freeman, Nancy (DEM) <nancy.freeman@dem.ri.gov>
Subject: Application No. 17-0079; Algonquin Gas Transmission, LLC: "Clear River Energy Center"

Good afternoon,

We have completed our review of the most recently submitted wetland edge plans, and I thought that this e-mail would be the most expedient way to get our comments to you so you can incorporate them into your response to our other June 19, 2017 comments.

Note that, as discussed with Craig Wood prior to inspection, review concentrated on those new/unverified wetland flags that were within or adjacent to the currently understood limit of disturbance ("LOD"). The following pages or portions of pages on plans most recently received on August 29, 2017 were **not** reviewed: Page A2 (sheet 2 of 19); Page A3 (sheet 3 of 19); Page A5 (sheet 5 of 19); Page B1 (sheet 6 of 19); Page B2 (sheet 7 of 19; *note: flags here not considered critical, and had previously been inspected and considered adequate; Flags 2-103 to 2-105, and 2-68 to 2-60 located out of current LOD; note flag 2022d should connect to 2-102); Page B5 (sheet 10 of 19); Page C1 (sheet 11 of 19); Page C2 (Sheet 12 of 19; <i>note: Flags 2-58 to 2-61 located out of current LOD*); Page C4 (sheet 14 of 19, *specifically flags 1-35b through 1-77b which flags an upland "island" located outside of the LOD*); Page C5 (sheet 18 of 19, *specifically flags 2-36 through 2-42, outside LOD*); Page D4 (sheet 19 of 19); Page D3 (sheet 18 of 19, *specifically flags 1-53a through 1-69a, outside LOD*).

All wetland flags reviewed were found to adequately depict the wetland edge, with the following exceptions:

- 1. Additional wetland is located northwest of flags 5-32 and 5-33, between flags 1-34, 1-35 and LOD stake 6252. This wetland was not flagged, but is located outside of the current LOD. It would extend the 50-foot perimeter wetland here, but not beyond the 100-foot riverbank wetland. Unless the LOD changes here, it is not critical that this additional wetland be depicted, but we recommend it be flagged nonetheless.
- 2. Flags 1-60d and 1-61d located NW of the laydown area both need to be moved east 20 feet to encompass additional wetland area.
- 3. A small additional area of forested wetland was noted west and northwest of flag 1-40, where overflow entered the swamp via an Area Subject to Storm Flowage approximately 10-feet south of flag 1-40. This wetland and ASSF is entirely outside the LOD and within the 100-foot riverbank wetland, so unless the LOD is revised it is not critical that this wetland be depicted, but we would recommend it be flagged nonetheless.
- 4. Flag 6-7 needs to be moved north 25-feet to encompass additional wetland.

The "5-xx" series flagging was confirmed to be contiguous to the swamp on the west side of the laydown area, but not the swamp to the east. It does have a 50-foot perimeter wetland.

The "6-xx" series flagging was confirmed to delineate a forested wetland less than 3 acres and therefore does not have a 50-foot perimeter wetland.

No additional wetland areas were noted within the project limits except as noted above.

Please feel free to contact me with any questions.

Chuck Horbert, Program Supervisor

RIDEM Office of Water Resources Freshwater Wetlands Program (401) 222-4700, ext. 7402